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Primary schools require specific evacuation plans considering children’s developmental vulnerabilities, but
current models frequently overlook children’s behavioural and health dynamics. Our proposed reliability-driven
agent-based modelling (ABM) framework incorporates the Theory of Planned Behaviour (TPB) for decision-
making and Dose-Response Model (DRM) for quantifying health hazards associated with smoke exposure,
aiming to close this gap. Using real-world evacuation data from an urban primary school, we simulate risk
scenarios to assess interactions between evacuation efficiency, environmental risks, and safety regulations. Re-
sults show that smoke density significantly affects system reliability, increasing evacuation time by 43.94%
(£0.834) and decreasing evacuee health by 76.83% (+0.735) in the worst-case scenario. We found that more
adult guides during evacuations could compensate for students’ unpreparedness. However, teacher placement’s
efficacy and interaction vary greatly depending on smoke patterns. This outcome highlights the need for
contingency-based evacuation plans customised to different environmental circumstances and acknowledges the
challenges in evaluating the effectiveness of school evacuation strategies. This work contributes to schools’
system safety by offering adaptive solutions for dynamic risks, emphasising the importance of child-specific
reliability specifications in school emergency planning. The framework offers practical ideas for urban resil-
ience, enabling organisations to mitigate health hazards and enhance the safety of critical infrastructures in
uncertain environments.

recorded experiments, and yield rich databases of movement dynamics
across various age groups [5-8] and evacuation scenarios [9-11].

1. Introduction

In the urban context, where high population density can exacerbate
situations, the capacity to evacuate quickly and in an orderly manner is
critical to reducing hazards and improving safety. Therefore, getting a
deeper understanding of mass evacuation is of significant importance.
Human reactions to emergencies can be evaluated through two stages: a)
evacuation decision-making and b) the individual’s evacuation move-
ment. Evacuation decision-making is initiated from the first moment of
reacting to a hazard [1] and ends once the evacuee chooses their way of
escaping the hazard. This process, therefore, can be influenced by
evacuees’ personality features, built environment, and hazardous nature
[1,2]. Afterwards, evacuees’ movements and their interactions with
each other, the environment, and hazards would significantly influence
evacuation efficiency [3,4]. Individuals’ evacuation movements are
often evaluated through advanced data collection methods, such as

In recent years, hybrid methodologies have advanced the accurate
assessment of evacuation risk. Chu et al. (2019) propose an evacuation
simulation system for Shanghai’s residential emergency management
[12]. This system linked residential complexes’ indoor and outdoor
components to residents’ demographic and geographical attributes,
improving evacuation efficiency. Other studies have combined failure
model analysis with Bayesian networks for maritime evacuation simu-
lations [13]. Scholars also merged traffic flow models with radiological
dispersion simulation to better anticipate the effectiveness of emergency
response [14]. An innovative study employed fire dynamics simulation
alongside with active dynamic signage system to communicate real-time
optimal save paths with evacuees [15]. Another study developed an
urban disaster evacuation simulation model using human psychology
models [16]. Battegazzorre et al. (2021) present a novel framework,
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IdeaCity, in which ABM is used in large-scale seismic evacuation simu-
lations to model the built environment and transportation network
system [17]. Tested in a town of Turin in Italy, the model could estimate
the building damage and debris caused by earthquake scenarios and
evaluate the interactions between the built environment, people and
emergency management service capacities in the town. Later, this model
was further expanded by adding a panic behavioural layer, which
highlights the necessity of considering humans’ psychology in massive
evacuation simulations to obtain more accurate predictions of the se-
quences [17]. Studies also integrated building information modelling
and virtual reality to simulate a fire accident on a campus, advancing
this field of research by incorporating top-notch technologies and the
use of computational fluid dynamics in modelling the impacts of fire
emergencies on the evacuation process [18]. Nevertheless, these models
prioritise adult populations and infrastructures, overlooking children’s
behaviour and psychological vulnerabilities. There exist some studies
like Luan et al. (2025) [19] which aims to develop an enhanced Extreme
Learning Machine model for rapid evacuation risk assessment in
educational institutions, emphasising its importance in mitigating
congestion and trampling to enhance safety and emergency response
effectiveness. However, the study consisted of college students with
adult-like physical and mental characteristics.

In the school setting, where children make up a significant propor-
tion of the population, underdeveloped cognitive, physical and
emotional capabilities can greatly influence evacuation behaviour. This
matter is more critical in young children [6,8]. Engineers of evacuation
systems still face the significant challenge of designing reliable protocols
considering children’s decision-making processes and health vulnera-
bilities. Tailored models incorporating these vulnerabilities improve
evacuation safety and inform scalable measures for educational in-
stitutions during emergencies. Our research addresses this deficiency by
including the Theory of Planned Behaviour (TPB) and the
Dose-Response Model (DRM) within the Agent-Based Modelling (ABM)
framework, thereby enhancing methodologies employed in maritime
evacuation risk assessment [13], chemical plants toxic gas leakage ac-
cidents [20], and radioactive emergencies [14]. However, we highlight
children’s behavioural thresholds and health deterioration due to smoke
exposure and use evacuation drill data to confirm the model’s reliability.
TPB could account for the reasons behind children’s evacuation
behaviour and incorporating the DRM into the modelling framework
allows us to establish a scientifically grounded framework for modelling
the health dynamics of evacuees during an emergency evacuation. This
study then applies the modelling framework to simulate children’s
evacuation behaviour and safety dynamics on the first floor of a selected
primary school.

The main contributions of this work are: a) introducing a new
modelling framework to simulate children’s evacuation under emer-
gency, enhancing the reliability of evacuation protocols for cognitively
developing population, b) including a dynamic track of smoke exposure
on children’s health and addressing a critical gap in evacuation studies
prioritising adult population, c) providing actionable evacuation safety
strategies based on hazard dynamics which can be scalable strategies to
optimise school safety. The remaining sections of the paper are organ-
ised as follows: The contrasts and relevance of prior research to this
work are discussed in Section 2. Next, Section 3 provides a brief back-
ground and lays the foundation for understanding the research frame-
work. Section 4 describes the framework details, followed by simulation
results in Section 5. Section 6 delves into discussions and provides
strategies for future work, and the paper concludes with the study’s
concluding remarks in Section 7.

2. Related works
2.1. Advancements in emergency evacuation studies

Modelling human evacuation is challenging due to the complexities
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in representg the elements that influence human collective behaviour
during emergencies [21]. Algorithms used to study human evacuation
behaviour, such as Dijkstra’s [22], colony optimisation [23], and
Depth-First Search, have limitations in accurately depicting complex
human behaviour because they ignore psychological factors and popu-
lation relationships. Later, advances in computer processing capacity led
to the emergence of the social-force model in 1995, one of the most
well-known models for modelling pedestrian evacuation [24]. While
social force models capture some aspects of human psychology and have
been extended later, they often assume a homogeneous population to
simulate human behaviour and are difficult to implement due to several
nonlinear equations [21].

Cellular automata and ABM are the most widely employed micro-
scopic models in evacuation research. Although cellular automata
models can offer relatively suitable solutions for the complexity of
human social systems, their limitations in capturing agents’ free
movement [25] make ABM a more compelling tool [26]. Some studies in
the field of evacuation simulations expand the ABM features by defining
that crowd behaviour should be considered within three levels: Indi-
vidual behaviour, interactions among them, and group behaviour [27].
Another study unveiled several social interactions in the context of
agent-based evacuation models, illustrating the intricate social in-
teractions and decision-making during evacuation [28]. Studies also
considered GIS-based data [29], demographic and movement dynamics
of agents [30], disaster knowledge and the emotional cognition effects
imposed by civilians and authority figures [31], and the effects of ve-
hicles’ presence on pedestrian decision-making [32,33] to model evac-
uation scenarios by ABM.

Despite the previous attempt to study human evacuation behaviour,
the difficulty of considering complex factors affecting individuals’
behaviour and the lack of social and behavioural theories [34] leads to
ad-hoc approaches to identifying human behaviour in simulation studies
[35,36]. To blend social and cognitive features with physical evacuation
modelling, studies applied the Belief-Desire-Intention model in ABM and
evaluated the effect of proper guidance on the efficiency of crowd
evacuation [4,37-39]. Evacuation decision-making has also been
explained by the Emergency Decision-Making Strategy [1]. Health Belief
Model has been employed to assess disaster preparedness [40,41].
Another study applied an extended TPB to explore how risk perception
influenced disaster preparedness behaviour [42]. Researchers also uti-
lised cognitive mapping to develop wayfinding algorithms integrating
ABM to simulate various levels of spatial awareness [43] and to present a
more realistic approach to wayfinding [44]. The Social Identity Model
has also been employed to predict pedestrian movement during emer-
gency evacuations [45]. Crowd behaviour in poisonous gas release and
fire accidents was modelled in recent studies using the OCEAN person-
ality model and Social-Learning Theory, respectively [46,47].

2.2. Research on children’s emergency evacuation

Due to psychological and physical differences between children and
adults, scientists have employed simulation approaches to examine
children’s evacuation behaviour in numerous ways. The first group of
studies has contributed to how individuals’ characteristics and in-
teractions impact evacuation time and speed [48,49]. Secondly, the ef-
fects of the built environment on students’ evacuation behaviour have
been focused on [50,51]. Simulations of recent seismic evacuations,
such as those of a middle school in Sichuan province during the 2008
Wenchuan earthquake [50] and a primary school affected by the 2014
Ludian earthquake in China [51], have examined how the layout designs
of these schools affect evacuation times. Thirdly, the geometric features
of schools and classroom layouts have been explored in combination
with individuals’ characteristics and interactions [52-55]. A unique
study used video drills to replicate children’s evacuation, but the model
failed to account for children’s interactions with the built environment
and the emergency [56].
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Despite notable progress, prior research on evacuation simulation of
children has been somewhat constrained, often focusing on specific
factors such as agent types, social dynamics, and school layouts. Schools,
where children spend most of their time, are often crowded places where
one-by-one accompaniment by an adult during an emergency is not
practical. The studies frequently focus on single-room evacuations or
vertical/horizontal evacuations [57-59], overlooking the modelling of
evacuations for entire building floors. On the other hand, children’s
evacuation is more chaotic than that of adults due to physical and psy-
chological differences, which impose greater risks to their safety [60].
Although studies attempted to understand the movement dynamics of
children considering body size, age, gender, and various built environ-
ment features [61,62], the limited availability of empirical data on the
evacuation behaviour of young children constrains simulation studies.
Lastly, implementing structural changes in already constructed schools
can be expensive and impractical. Thus, secondary safety-enhancing
measures, such as trained teachers and students, are needed to miti-
gate risk factors arising during emergencies and require further study
[63]. Therefore, there remains significant potential to fully leverage the
benefits of evacuation simulation tools, particularly ABM, to provide
sufficient evacuation safety protocols designed explicitly for children’s
characteristics.

3. Background

Modelling children’s evacuation environments necessitates
designing a science-based modelling framework. In this study, we inte-
grate TBP to provide a logical decision-making mechanism. Combining a
health-simulating model with evacuation time and dynamics in school
evacuations offers more profound insights into unexpected events. DRM
has then defined the hazard’s health impacts to simulate more realistic
health outcomes in emergency scenarios.

3.1. Evacuation decision-making mechanism and theory of planned
behaviour

TPB is a psychological framework explaining how individuals’
behaviour is influenced by “individuals’ attitude”, “subjective norms~,
and “perceived behavioural control” [64]. Several studies have suc-
cessfully used TPB to model intentions related to evacuation decisions
and disaster preparedness behaviours [4,35]. It provides a structured
framework through its core constructs—attitudes, subjective norms, and
perceived behavioral control—to represent evacuation decision pro-
cesses. While TPB may not fully capture the dynamic, high-stress, and
heuristic-driven behaviors during real-time evacuations, it remains a
valuable tool for modeling the intentional aspects of evacuation de-
cisions. Integrating TPB enhances behavioral modeling by linking in-
tentions to actions, and our approach incorporates these cognitive
dimensions while acknowledging the need for future work to address
evacuation’s full complexity.

The term “attitude” describes a person’s views of the results or re-
percussions of behaviour, which societal influence, personal values, and
life experiences can influence. In the context of emergency evacuation,
individuals’ attitudes towards emergencies may include beliefs
regarding the possible harm or danger they pose. Previous studies
showed that under low visibility, pedestrians are more likely to follow
neighbours, assist each other, and navigate along obstacles [65].
Another study revealed that when visibility is limited, pedestrians
follow specific movement patterns, such as searching for walls and
interacting differently with others, influencing their evacuation strate-
gies and distances travelled [66]. A recent VR-based study also illus-
trated that individuals’ risky decisions during fire evacuation are
associated with their risk tolerance, smoke density, and neighbours’
behaviour [67].

The second element of TPB refers to perceived social pressure or
influence from others that affects individuals’ intentions and behaviour.
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Researchers have also examined the possibility of using emotional
contiguity and intimacy as predictors of evacuee decision-making [68].
Luan et al. (2025) proved that structured guidance (vs free evacuation)
could reduce passengers’ risky behaviour in escaping through airport
terminals [19]. Given the children’s inadequate psychological capacity
to meet their demands during emergencies, subjective norms may in-
fluence their evacuation behaviour. The literature indicates that the
relationship between adult guidance and students’ evacuation choices
remains inconclusive, with some studies failing to establish a significant
association [69]. Meanwhile, others suggest that under emergency
conditions, evacuation patterns become imbalanced when children
evacuate without adult guidance [69]. However, research confirmed
that children responded more immediately to adult instructions than to
the warning system [70].

The third component of TPB pertains to an individual’s confidence in
their ability to execute an activity successfully. Evacuation training
helps enhance this confidence by teaching people the necessary skills for
effective evacuations [71-74]. On the other hand, behavioural ratio-
nality is crucial in children’s evacuation efficiency, reflecting how they
make logical decisions during evacuation [49]. Similar studies on
behavioural modelling with a focus on human psychological factors in
evacuation simulations integrated rationality and its influence on
evacuees’ decision-making [39]. Moreover, in emergencies, stable group
formations may be disrupted [75], leading individuals to exhibit herd
behaviour, particularly among young children [74,76]. Subsequent
studies explored this phenomenon by simulating a specific group of
agents known as “herders”, characterized by distinct route selection
behavior [77].

3.2. Evacuation movements and dynamics facts

Previously, a clear and strong association between evacuation speed
and the age of children has been found; as the age increases, the evac-
uation speed also increases [78,79]. Studies also identified evidence
demonstrating the considerable influence of teachers’ guidance on stu-
dents’ emergency response time [60,79,80]. Additionally, individuals
typically form groups based on their social connections, and the char-
acteristics of these groups directly influence walking velocity [81].
Literature evidence indicates that children evacuating in groups of two
or three experience longer evacuation times. This fact is due to increased
delays stemming from the larger proportion of students exhibiting group
behaviour and the size of the groups [82]. Research also revealed that
unobstructed corridors and suitable desk configurations in classrooms
significantly enhance evacuation efficiency [83]. Reduced visibility and
its impact on evacuation speeds is another crucial element, where, due
to the lack of data on children’s evacuation speeds during reduced vis-
ibility, we had to rely on adult speed data to understand evacuation
dynamics better, specifically evacuation speed, time, and exit follow
[75,81]. On the other hand, a virtual reality study proved that people
would try to avoid smoke sources, potentially increasing evacuation
time [84]. The experiments also demonstrated that walking speed de-
creases from 0.63 to 0.4 as smoke density varies [81]. Another related
study showed that ideal visibility enhances rapid and confident
mobility, but low visibility requires cautious navigation, possibly
resulting in delays as individuals manoeuvre to circumvent obstructions
[85]. Therefore, the children’s evacuation movement can be influenced
by factors such as age, teacher guidance, visibility, obstacles, and group
size, with larger groups often causing delays.

3.3. Health risks associated with smoke

Emergencies, such as fire accidents, can have an immediate impact
on evacuees’ health. Smoke exposure during fire accidents impacts the
body by activating lung receptors, inducing oxidative stress and
inflammation, and penetrating beyond the lungs, leading to systemic
effects [86]. Research on firefighters subjected to extreme heat and
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physical exertion has shown that they may experience a higher risk of
myocardial ischaemia, impaired vascular function, and increased blood
clot formation [87]. On the other hand, in crowd disasters, as crowds
grow, panic rises, creating an amplifying feedback loop and direct
causes like crowd pressure, which causes falls, trampling, and fatalities
[88]. With that, studies such as Naili et al. (2019) attempted to predict
agents’ health using ABM [89]. Later, scholars developed a spatiotem-
poral dynamic exposure model to determine the flood-related proba-
bility of injury or death. A hazard-human coupled model (HazardCM) is
used to assess city dynamic exposure to rainfall-triggered natural haz-
ards and the likelihood of injury or death [90]. Zhang et al. (2023) opted
to identify the potential hazards of smoke and fire on human safety [91].
Another study utilised ABM to develop a social vulnerability index,
predicting the health outcomes of populations exposed to Hurricane
Harvey [92]. In a novel framework by Golshani et al. (2025) [15],
Fractional Effective Dose model was embodied in ABM to address the
coupled impacts of fire, heat, and toxic gas on evacuees’ health and
egress time.

However, there is a shortage of health theories incorporated into
child evacuation simulation models to address dynamic interactions
between exposure level, duration, and health outcomes. To close this
gap, we incorporated the DRM in evacuation modelling. DRM is a key
concept in toxicology and environmental health sciences that links
environmental agent dose to health consequences. This strategy is based
on the premise that the severity of a health effect is determined by both
the intensity (dose) and duration of exposure [93].

4. Research methods and framework
4.1. Evacuation drills

The empirical data used in building the modelling framework were
collected through meticulous data analysis of six recorded video drills
(listed in Table 1) conducted in the two classrooms of the affiliated
primary school of the XXX. The school layout is illustrated in Fig. 1. To
assess evacuation duration, speed, and student behaviour, this study
adjusted the teachers’ fixed locations and smoke emissions, reflecting
that teachers remained stationary and did not escort students during
both drills and simulations. Students received evacuation training from
their teachers, whom the research team had previously educated.
Hearing the warning, students began the experiment, which terminated
when everyone reached the safe zone. Three smoke machines, with
manufacturer-verified safety and health effects, altered visibility. The
evacuation drills were recorded using 1080P HD CCTV cameras.

4.2. Children evacuation modelling framework

Fig. 2 presents the ABM integrated framework, which uniquely in-
tegrates TPB for reasoning in decision-making and DRM for health-risk
qualification. Empirical data on actual evacuation movements en-
hances the model’s accuracy, ensuring that the simulated evacuation
dynamics closely reflect real-world scenarios. Note that the study
referred to available data from previous studies in each stage of creating
the modelling framework, or the research team conducted evacuation
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drills. To ensure the transparency and reproducibility of the modelling
process, the Overview, Design Concepts, and Details document protocol
(ODD) has been followed [94]. Additionally, recognising many ABM
models’ shortcomings, the study followed comprehensive guidelines to
verify the model’s validity and alignment with real-world scenarios, as
published by Richiardi et al. (2006) [95].

4.2.1. Evacuation decision-making and behaviour rules

In this work, the implementation of TPB was demonstrated to be
efficient in improving simulation assumptions and operating guidelines.
As shown in computational sociology and ABM, simpler models are
purposefully used to show the complexity of evacuation dynamics rules
[96]. This approach corresponds with the primary goal of ABM philos-
ophy, which is building an abstracted system representation over
real-world replication [97]. According to the introduction of the
research background in Section 3.1, each element of TPB and its ratio-
nality in constructing the model framework is given below:

Individuals’ attitude: As discussed earlier, fire can lead to specific
evacuation behaviour different from what is observed during normal
visibility evacuations. Through our evacuation drills, students exhibited
hasty decision-making, initiating evacuation once smoke was intro-
duced to the experiments (Fig. 3). Previous observations also revealed
similar findings, as evacuation from school corridors showed that low
visibility was the most significant factor affecting children’s exit choices
[98]. Therefore, in building the evacuation modelling framework, we
assume that smoke affects children’s behaviour and that they stay away
from smoke sources. We further detailed the model assumption by
referring to a study by Fu et al. (2021), which suggested that smoke
density is another important factor affecting evacuees’ decision-making
[67]. Hence, in constructing the ABM model, agents (students) are
allowed unrestricted movement towards patches with a smoke density
below 50 %. However, when encountering higher smoke density, agents
opt for alternative patches while maintaining a minimum distance of
three patches.

Subjective norms: Studies in the field of pre-announced classroom
evacuation experiments set the pre-evacuation time from 8-20 s [99]. In
our drills, we observed that the teacher’s guidance greatly impacted
students’ first reactions. Teachers led students to evacuate within two
seconds of hearing the warning, whereas, for those without teacher
assistance, evacuation took up to 12 s (Fig. 4). Therefore, the model
randomly assigned first reaction times to agents based on whether or not
teachers were present in the classroom, with agents who lacked teacher
guidance receiving longer reaction times.

Previous research on influential factors affecting children’s evacua-
tion time manifested the profound impact of adult mentors in the cor-
ridors [98]. This fact is confiremed by the curent stuudy’s observations,
as there is a significant difference in total evacuation time between drills
with and without teachers guiding students in the corridors, as shown in
Fig. 5. However, according to the mentioned study, the adult’s guidance
did not significantly influence the children’s classroom exit choices (p =
0.555, Coefficient(B) = 0.697, Odds Ratio = 2.007). Therefore, the ABM
model initially excludes teachers’ influence on children’s classroom
evacuation escape options.

Perceived behavioural control: As discussed in Section 3.1,

Table 1

Evacuation drills set up and results.
Experiments Teacher numbers in: Visibility Duration (sec.) Participants

Classrooms Corridor Boys Girls

Exp 1-1 0 0 Good 74 46 31
Exp 1-2 2 2 Good 46 36 30
Exp 1-3 1 (classroom 1) 1 Good 104 40 22
Exp 1-4 0 0 Low 82 47 37
Exp 1-5 2 2 Low 37 44 36
Exp 1-6 1 (classroom 1) 1 Low 150 45 41
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Fig. 4. First reaction time, Left) guided by the teacher, Right) no teacher guided.
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Fig. 5. Evacuation time categorised by adult guidance in the corridors and visibility condition.

behavioural rationality and evacuation training were considered in
developing the model. Considering the influence of training on people’s
wayfinding and patch selection behaviour [47,100], we distinguish
between two main groups of student agents: “trained” and “non-trained
students”. Both groups chose the nearest gate to exit, a consideration
primarily found in the relevant literature [55,59,101]. While the trained
students act rationally, the untrained students selfishly choose their path
and movement behaviour. Trained students prioritise travel distance in
their movement decisions, while untrained agents consider both the
proximity to the selected gate and areas with lower population density.
Given the frequent observation of peer-following behaviour through our
drills, the model considered the possibility of exhibiting “herding
behaviour” for both groups. However, it is essential to note that the
likelihood of displaying herding behaviour is lower among trained in-
dividuals. The wayfinding behaviour of each group of agents is deter-
mined as follows:

e Trained students select the closest patches to the chosen gate by
considering the travel distance:

Desired travel distance = (Dmax — D;)/(Dmax — Dmin) €D)

Where Dy, is the farthest distance of all patches, Dp, is the closest
distance of all patches. Dj is the travel distance from the target patch ; to
its nearest gate.

o Non-trained students prioritise the most appealing patch based on
both the shortest distance to the selected gate and the lowest popu-
lation density along the route:

Desired patch = a * Desired travel distance +
* Desired population density mn) 2
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Where o and p are constants that define the influence of travel dis-
tance and population density on attraction, with values @ = 2 and f = 2.
The “desired population density (min)” is calculated as:

Desired population density(miny = (Pmax — Pi)/ (Pmax — Prmin) 3)

Where P, is the highest population density among all patches, P,
is the lowest population density, P; is the population density of patch ;,
computed as:

Pi=N;/(2+R+1)* C)]

Where N; is the total number of agents within the search radius, and
R is the search radius.

e Herders, on the other hand, are attracted to areas with higher
population density and are more likely to follow crowds by using:

Desired populationdensity max) = (P; — Pmin) / (Pmax — Prmin) (5)

Pushing behaviour may also emerge due to the individual’s percep-
tion of a lack of control over their own movement or feeling pressed by
others. Based on studies such as Liu et al. (2016) [52], this research
considered identical pushing behaviour of each agent group of students.
The rational behaviour of trained students will result in no-pushing
behaviour, whereas a lack of evacuation training causes pushing the
front neighbour among untrained students, particularly when they are
waiting in a single path for more than three ticks. Herders will exhibit
pushing behaviour if one of their neighbours initiates pushing. In
evacuation scenarios, a brief delay often occurs as individuals cogni-
tively process the emergency before taking action—a phase known as
pre-evacuation time. This delay, which can range widely in children
from 3 to 59 s [102], reflects the time needed to perceive risk and decide
on appropriate responses. Observations from our drills and other studies
[103] show that children typically start by following instructions and
may only exhibit pushing behaviour after about a 3-second pause when
movement is impeded or crowding increases. To realistically capture
this, our model incorporates a fixed 3-second delay before pushing
behaviour initiates, balancing empirical evidence with model simplicity.
Fig. 6 provides a dynamic view showing the events’ sequence that
characterises the simulation experiment. Note that, apart from the
previously mentioned rules, all agents are programmed to avoid colli-
sions and obstacles.

4.2.2. Evacuation movements

In this study, we adopt a speed range of 0.5 to 1.8 m/s, derived from
experimental studies investigating the evacuation speeds of children
aged 6 to 9 [78,79]. However, given the environmental factors, evac-
uees’ speed can change. According to a recent study on children’s
evacuation speed and density, teachers’ guidance in the school corridors
positively and significantly impacted children’s evacuation speed [104].
Low visibility is another factor with proven negative impacts on the
evacuees’ speed, previously discussed in Section 3.2. In total, low visi-
bility would potentially lead to hasty evacuation due to slower human
motion in search of careful navigation. Therefore, referring to the
simulation study by Ionescu et al. (2021) [55], this study assumed that
introducing teachers into the environment enhances the speed by eight
per cent, reflecting a positive influence on the overall efficiency of the
evacuation process. We also assumed that smoke in the corridors would
reduce agents’ speed within a five-patch radius of the smoke source by
two per cent for any density level. Group walking is another element
influencing evacuation speed. Furthermore, in building the ABM model,
the influence of group walking on the speed of agents was assessed, as
obtained from a simulation study by Zhou et al. (2020) [105]. Note that
agents’ health also affected their speed, where severely injured agents
experienced a speed decrease (See Section 4.2.3. for more details on
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modelling evacuees’ health attributes).

4.2.3. Agents’ health attributes

The immediate health impacts of emergencies on individuals can
significantly influence the outcomes of evacuation processes. Large-
scale seismic evacuation simulations incorporated agents’ health con-
ditions by accounting for building damage levels in indoor settings and
debris accumulation in outdoor environments [106]. In our model, the
agents’ health ranged from 0 to 100, with 100 primarily assigned to all
the student agents at the beginning of the simulations. Studies on toxic
gas attacks and evacuation simulations have revealed that longer gas
release durations and delayed evacuations can significantly increase the
average exposure risk [19]. Similar findings have been presented in
studies of radiological emergencies, where delaying the release of
radiological material reduced exposure risk [14]. Incorporating DRM,
the study first considered the effects of fire smoke on agents’ health; the
agents’ health decreases as a function of both the level of exposure to
harmful elements (e.g., smoke) and the duration of that exposure.
Emergency medical reports indicate that immediate symptoms from
exposure to heavy smoke can appear within seconds to minutes [107,
108]. Given children’s smaller airways and higher breathing rates, this
time span can be even shorter, and the resulting health deterioration
more severe. Children are notably more susceptible to smoke exposure
than adults, particularly due to carbon monoxide (CO) poisoning, and
can become incapacitated at lower exposure levels. However, there is
limited research on children’s immediate health deterioration during
fire incidents, largely due to ethical constraints preventing experimental
exposure in this vulnerable population. Consequently, studies like ours
must rely on adult physiological data, often derived from relatively
healthy populations such as firefighters, to inform parameter settings.
Therefore, due to this lack of direct pediatric data and ethical limita-
tions, we adopted a conservative 5-second exposure threshold and tested
its impact through sensitivity analysis. The cut-off point for health
decline—such as a 30 % decrement—is also based on empirical adult
studies and applied repeatedly as long as the agent remains exposed,
consistent with DRM principles. Supporting this approach, Purser (2002)
highlights that children are highly susceptible to smoke, exhibiting
escape-impairing symptoms at carboxyhemoglobin (COHbD) levels as low
as 25 %. Dense smoke (>15 g/m?®) can incapacitate sensitive individuals
within minutes, indicating that even brief exposure to very dense smoke
can cause rapid health deterioration in children. On the other hand,
lower-density smoke exposure results in a lesser health impact, with a 10
% decrease for agents exposed to smoke densities below 50 %.

Second, we also incorporated agent-based rules that capture agent
types and situational factors as defined in previous sections to model
adverse health effects from pushing and physical contact between the
agents. For example, if agents face obstacles, such as dead agents, their
health is reduced by 2 %, and when others push agents into the crowd,
their health is further compromised by 2.5 %. While this approach does
not directly measure the magnitude of social force between agents to
predict casualties [109], it captures realistic consequences of over-
crowding and lack of personal space, leading to aggressive physical in-
teractions. These rules are consistent with the DRM in that they account
for additional stressors that impact agents’ health over time, contrib-
uting to an overall decline in health in the simulation.

We also used thresholds for serious injury and death. Agents with
health levels between 10 and 20 are seriously injured, while those below
nine are dead. These criteria enable us to identify the point at which
agents’ health has deteriorated and survival is no longer feasible.

4.3. Model features and entities

The model framework was applied to the selected population, and
the information for the model was collected from the chosen school
administration. The school’s first floor comprises seven classrooms, two
offices, and two restrooms. For simulation purposes, we focused solely
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on the classrooms and corridors as the available paths for escape,
excluding the offices and restrooms. The first floor of the primary school
has been graphically drawn in NetLogo 6.4.0 using patch agents. In
general, two types of classrooms are considered: One with a length of 9
m and the other with a length of 12 m The first classroom can accom-
modate 44 students, while the second one has been designed to provide
seats for 38 students, as shown in Fig. 7. In the model, every patch equals
0.3 x 0.3 m, and every tick equals 1 s. The students’ shoulder size has
also been set to 0.3 according to the available studies pointing to the
shoulder size of Chinese primary school students [52,110]. Each patch
can only be occupied by one agent. The size of the school furniture has
been relatively adjusted to be multiples of 0.3.

The environmental elements used for pathfinding have been recog-
nised by patch colour as follows: walls (black), gates (red), walkable
corridors (blue), and the yard (safe zone, purple). Smoke sources, placed
in three fixed locations near each exit (smoke 1, 2, and 3), allow for the
evaluation of smoke’s impact on evacuation efficiency, with smoke
density adjustable as a percentage (0-100 %). The simulation ends when
all the students reach the safe zone (yard). Each agent is represented by a
coloured circle corresponding to their role: dark red for students of all
types, green for classroom teachers, light red for teachers in the corri-
dors, fire icons (with darker shades indicating higher density) for fire,
and blue for deceased students. The student agents were divided into
three distinct types based on their route selection and movement
behaviour: trained students, untrained students, and herder students
(herders), as described in Section 4.2.1, and their characteristics used in
the model are given in Table X. Students are seated behind their class-
room desks, with their locations randomly assigned to accommodate
varying classroom capacities as needed. Teachers are fixed agents who
stand behind the lectern in classes or between classroom gates in cor-
ridors every nine meters.

The Graphical User Interface (GUI) of NetLogo (presented in Fig. 8)
allows users to modify several factors related to population size in each
classroom, the overall proportion of trained students, the likelihood of
herding behaviour for both trained and non-trained students, and the
positioning of teachers. Additionally, users can adjust the configuration
of smoke sources, enabling changes in smoke density for each source.
Results are presented in the form of total evacuation time, variations in
aggregated speed and agents’ health over time, and the average distance
travelled by the agents, number of herders and trained agents, and
number of dead and injured agents.

When constructing a realistic model, a combination of stochastic and
deterministic treatments is necessary. Stochasticity has already been
applied by considering variations in agent behaviour, smoke density
configurations, randomness in agents’ initial reaction times, and the
probability of turning (un)trained students into herders. Deterministic
treatment of fate is also considered in the building layout, evacuation
route choice, exit selection rules for each type of agent, initial positions
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of agents, movement speeds, and teachers’ positions.

4.4. Model calibration and validation

Before initiating simulations, model parameters must be adjusted to
match real-world conditions and agent behaviour during the evacuation
drill. To calibrate the model, firstly, we ensured that the population of
agents accurately represented a known real-world population by
providing modules rooted in empirical evidence for their behaviours.
Secondly, we verified that the model output could be converted into
real-time units. Lastly, we acquired field data from a drill conducted at
the same school for comparison with the model output [26]. Attention
should be paid to the fact that the model’s accuracy has been validated
for the movement time and speed rules of agents, with the agents’ health
being excluded from the scope of calibration due to the unavailability of
real-time data.

Notably, the evacuation drill for model calibration considered
classrooms one and two under good visibility conditions (no smoke).
Each classroom had one teacher, and two teachers were stationed in the
corridors in front of each classroom. Classroom One accommodated 21
students, while Classroom Two had 15 students. The total evacuation
time recorded was 31 s, and trajectory analysis revealed that students
followed the rule of selecting the nearest exit gate. The behavioural rules
were adjusted accordingly through multiple model runs. Recognising
that achieving a 100 % match was not feasible due to stochastic ele-
ments, model outputs frequently vary between simulation runs. In
alignment with the calibration method proposed by Delcea, Cotfas,
Craciun, et al. 2020 [111], we determined the model to be successfully
calibrated when the simulated results fell within the range accounting
for a five per cent error margin (acceptable error of +£1.55 s) and pro-
ceeded to simulate the model under various scenarios. Additionally,
model validation, which determines the degree to which the model
accurately represents the simulation [32], has also been assessed by
evaluating the validity of model structure, model behaviour, and pro-
gram [95].

4.5. Model experimentation

We adopted a scenario-based simulation [112] to examine human
interactions with the built environment, hazards, and safety measures.
This study has developed 36 simulation scenarios to explore factors such
as smoke density, placement of adult guidance, and the proportion of
trained students. All seven classrooms operate at full capacity to
accommodate students (each simulation had 278 agents), with agents
initially starting at 100 % health. These scenarios are divided into four
major categories based on smoke density, and each is further segmented
into sub-scenarios to analyse the impact of different variables (guidance
position and students’ training) on simulation outcomes (Table 2). To
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Scenarios characteristics

Smoke density (four main simulation
groups)

Positions of adult guidance

Percentage of trained students

No smoke

Source 1 & 3: 100 % and source 2: 50 %
Source 1 & 3: 50 % and source 2: 100 %
Source 1: 100 % and sources 2 & 3: 100
%

In all classrooms

In all corridors

In all classrooms and corridors

0%

50 %

100 %
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streamline the simulations, the probability of exhibiting herding
behaviour for trained and non-trained students is set at 30 % and 70 %,
respectively. According to the available studies and guidelines, each
sub-scenario is simulated 30 times [113], and the average values are
used for subsequent analysis. It is important to note that evacuation time
is recorded in seconds, and health level is calculated as a percentage. For
simplicity, we will use “heavy smoke source” when smoke positions are
at 100 % density and avoid detailing that other smoke source(s) are
simultaneously set at 50 % density.

5. Results

This section presents three analyses: a sensitivity study on parame-
ters’ effects, speed trends under smoke conditions, and intra-group
variability in evacuation influenced by smoke, training, and teacher
positions.
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5.1. Comprehensive sensitivity analysis

Sensitivity analysis enables researchers to systematically examine
the effect of parameters’ variations across a spectrum of plausible sce-
narios rather than relying on fixed parameter configurations for accurate
assessments [26]. This section employed sensitivity analysis, a robust
method to investigate the impact of smoke configuration partially,
teachers’ position and numbers, trained students and response in evac-
uation total time and agents’ health. Fig. 9 shows multiple bar charts,
each of which is a dual-level chart depicting the fraction of untrained
agents and the placements of teachers. On the next level, it marks four
smoke spots. Separate bars show evacuation time, death toll, and
injuries.

The optimal safety strategy was thought to involve the presence of
teachers in both classrooms and corridors. However, based on simula-
tion results presented in Fig. 9, its effect on evacuation time cannot be
universally generalised, as students’ training is another important factor
influencing total evacuation time. For example, in scenarios where the
agents are entirely untrained, the importance of teachers’ positioning
and number becomes evident as smoke severity increases. In most
simulations conducted with heavy smoke, the multiple use of adults’
guidance can reduce evacuation time. However, for scenarios where the
proportion of trained students increased, altering teachers’ locations or
utilising them in multiple locations did not positively impact the evac-
uation time of reducing agents when faced with smoke. This finding
suggests that students may encounter challenges in low-visibility con-
ditions when provided with numerous adult guidance and evacuation
instructions.

By comparing scenarios divided by teachers’ positioning, we
observed that when teachers are only available in classrooms and a se-
vere smoke source is present in the horizontal corridor, the increase in
the proportion of trained students may have a detrimental effect on the
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death toll. However, in similar scenarios without smoke, the positive
impact of students’ training on reducing injuries was evident.
Contrarily, when teachers were solely present in the passage during
heavy smoke in a single vertical corridor, students’ training positively
impacted evacuation time. Nevertheless, this factor demonstrated con-
flicting effects on the evacuation time of students guided by teachers in
the classrooms, particularly in scenarios where heavy smoke simulta-
neously affected either the horizontal or two vertical corridors. There-
fore, in most cases, positioning teachers in classrooms increases
potential health hazards for students.

Through all iterations, when severe smoke sources were present in
the horizontal corridor, having teachers in both corridors and class-
rooms or exclusively in corridors demonstrated superior performance in
reducing the death toll compared to relying solely on adults’ guidance
within classrooms. This conclusion was consistent across all simulation
sets involving various proportions of trained students. However,
employing multiple teachers’ guidance slightly increased total evacua-
tion time in most scenarios.

The comparison within the inner graphs revealed a significant
change in evacuation time and the number of deaths associated with
smoke configurations. This increase was consistently highest in sce-
narios where the horizontal corridor was heavily affected by dense
smoke, regardless of the proportion of trained students or teachers’
location. In such conditions, students from three classrooms in a hori-
zontal corridor were unable to exit through the nearest gate (exit B) and
were forced to choose alternative exits for escape. Apart from scenarios
with heavy smoke in the horizontal corridor, a steady linear increase in
death toll was observed, starting from smoke-free observations to sce-
narios with one or two heavy smoke sources in the vertical corridor(s).
However, no similar pattern for total evacuation time was observed.
Despite anticipating longer evacuation times in scenarios with two
simultaneous smoke sources, considering two additional factors and the
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randomness of parameters in simulations contradicted this initial
expectation.

5.2. Speed trends change

The initial noteworthy observation regarding the impact of smoke on
children’s movement behaviour was the noticeable change in their
average speed. Similar trends have been observed for the simulations in
each smoke configuration category. To illustrate this trend while
maintaining simplicity in the data presentation, Fig. 10 exclusively de-
picts the speed change over ticks for smoke configurations where the
proportion of trained students was set to 50 %, and teachers were
positioned in both corridors and classrooms. The average speed initially
decreases across three smoke configurations—smoke-free, smoke source
in one vertical corridor, and smoke sources in two vertical corridors.
Subsequently, the average speed increases upon reaching a certain level,
which is associated with decreased density near exits. This increase is
particularly pronounced when agents escape through environments
with two heavily dense smoke sources in the vertical corridors. The
likely reason for this sharp increase is the placement of smoke sources at
the corridors’ endpoints, prompting agents to choose alternate exits. As
a result, agents spend less time in these locations and move quickly to-
wards exit B. Despite agents having two exits to select from, the slope of
the speed increase is less in scenarios with one heavy smoke source in
the left corridor. One possible explanation is that agents’ exposure to
low-density smoke in the right corridor affects their speed and health, as
they still opt to exit through Gate C. Interestingly, despite the significant
change in average speed, evacuation times remain nearly identical for
these two smoke configurations. In the smoke-free scenario, the speed
also exhibits a decrease followed by an increase; however, after a while,
a steady speed is observed until the end of the evacuation, which lasts for
a shorter duration than the evacuations above. Notably, setting a single
heavy smoke source in the horizontal corridor and two weak smoke
sources in other corridors results in a continual decrease in average
speed.
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5.3. Intra-group variability assessment: smoke configuration-based

The sensitivity analysis findings showed that the smoke configura-
tion significantly impacted the total evacuation time and agents’ health
status. Thus, MANOVA analysis was employed to investigate the influ-
ence of students’ training and teachers’ positions on total evacuation
time and average final health across four different smoke density com-
binations. Before conducting MANOVAs, the study meticulously
assessed the test’s assumptions. We checked the existence of outliers in
each subset of the dataset using Mahalanobis distance and examined the
linear relationships between each pair of dependent variables within
each independent variable group. Next, multivariate normality was
assessed using the Shapiro-Wilk test, and multicollinearity among the
dependent variables was examined. MANOVA analysis was then per-
formed using SPSS 24, and the assumption of equality of covariance
matrices was also verified. The agents’ average final health and evacu-
ation total time for each scenario is given in Table 3.

o No-smoke scenarios (baseline scenarios)

The fewest fatalities and injuries occurred during the smoke-free
evacuation simulations, indicating that the school layout can provide
a safe evacuation plan free from significant fire incidents. All exits
exhibited a constant flow rate, as students distributed themselves
equally among the closest exits, with Gate B showing the highest flow
rate per second. However, despite examining the impacts of students’
training and the positioning of adults’ guidance on total evacuation time
and average agents’ health statuses, MANOVA test revealed no statisti-
cally significant differences across the levels of the proportion of trained
agents and teachers’ locations in a linear combination of both dependent
variables (all p > 0.05). Additionally, there was no statistically signifi-
cant interaction effect between teachers’ position and the proportion of
trained students on the combined dependent variables, with F(8, 512) =
0.812, p = 0.593, and Pillai’s Trace = 0.025. Therefore, evacuation time
and agents’ health did not exhibit significant differences among the four
smoke-free scenarios, encompassing different combinations of students’
training and adults’ guidance positioning.
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Fig. 10. Speed change for different smoke configurations (for scenarios where 50 % of agents were trained and teachers were positioned in both classrooms
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Table 3
Simulation results.
Smoke Trained Teachers in:  Average final Evacuation
configuration students’ health status total time
proportion Mean Std. Mean Std.
No smoke 0 % trained Classrooms 53.81 1.15 3832 1.28
students Corridors 5355 1.50 38.06 0.79
Both 54.14 1.40 38.52 1.69
classrooms
& corridors
50 % Classrooms 54.06 1.32 38.29 1.26
trained Corridors 53.76 1.43 3834 0.86
students Both 54.08 1.12 3855 1.45
classrooms
& corridors
100 % Classrooms 54.56 1.59 38.00 0.61
trained Corridors 5398 137 37.84 0.75
students Both 53.81 1.15 38.22 1.15
classrooms
& corridors
Heavy smokein 0 % trained Classrooms 52.41 0.97 51.40 4.28
one vertical students Corridors 52.58 0.72 48.89 4.87
corridor Both 5240 0.76 45.39 4.17
classrooms
& corridors
50 % Classrooms 5238 055 47.16 5.56
trained Corridors 5255 0.61 47.83 5.68
students Both 52.55 0.61 48.28  4.99
classrooms
& corridors
100 % Classrooms 52.79 0.90 49.63 5.98
trained Corridors 52.61 1.13  46.72 5.43
students Both 53.03 1.03 47.87 5.45
classrooms
& corridors
Heavy smokein 0 % trained Classrooms 53.74 0.74 49.74 478
two vertical students Corridors 46.88 0.72 46.97 6.04
corridors Both 46.72 0.87 48.27 6.75
classrooms
& corridors
50 % Classrooms 47.00 0.87 49.25 4.48
trained Corridors 46.78 0.73 49.58 5.33
students Both 46.76  0.84 48.11 4.69
classrooms
& corridors
100 % Classrooms 47.20 0.71 48.60 7.41
trained Corridors 46.59 0.73 49.77 6.14
students Both 46.76 1.17 48.25 4.52
classrooms
& corridors
Heavy smokein 0 % trained Classrooms 30.49 1.08 67.55 3.04
horizental students Corridors 30.23 1.08 67.33 2.42
corridor Both 30.47 094 67.91 3.35
classrooms
& corridors
50 % Classrooms 30.74 1.04 68.09 4.42
trained Corridors 3042 1.20 69.39 5.70
students Both 30.42 1.20 68.20 3.77
classrooms
& corridors
100 % Classrooms 30.70 0.98 66.68 8.33
trained Corridors 30.69 098 69.30 5.51
students Both 30.54 097 69.58 5.09
classrooms
& corridors

e Scenarios with heavy smoke in one vertical corridor

In the second smoke configuration, the smoke with the highest
density was positioned in the left corridor, while two additional smoke
sources with 50 % power were placed in the horizontal and right cor-
ridors. Consequently, the agents had only two exits to escape through:
gates B and C. This group of simulations experienced the second-highest
number of injuries and the lowest number of deaths (except in smoke-
free scenarios). Using MANOVA analysis, we observed a significant
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impact of students’ training on the amalgamation of dependent vari-
ables, as evidenced by a significant Pillai’s Trace, F(4, 520) = 2.988,p =
0.019, Pillai’s Trace = 0.045. Further scrutiny revealed that the training
of students significantly influenced the average final health of the stu-
dents (F(2, 260) = 5.541, p = 0.004, partial n2 = 0.041). Post hoc
pairwise comparisons using the Scheffé test were conducted to investi-
gate disparities between groups, ensuring a robust control over the Type
I error rate across all comparisons. These post hoc examinations
revealed significant disparities in the final health statuses of scenarios
with 100 % trained students compared to those with no training (Mean
difference = 0.3877, SE = 0.12259, p = 0.007). Additionally, the posi-
tion of teachers significantly impacted the total evacuation time (F(2,
260) = 4.295, p = 0.015, partial n2 = 0.032). Post hoc analyses revealed
significant disparities in evacuation time between scenarios in which
teachers concurrently directed students in both classrooms and corridors
vs those in which teachers exclusively managed students in classrooms
(Mean difference = —2.2155, SE = 0.76980, p = 0.017). The interaction
between the proportion of trained pupils and teachers’ positions was
significant, indicating that these factors collectively affect total evacu-
ation time (F(4, 260) = 4.129, p = 0.003, partial n2 = 0.06).

e Scenarios with two heavy smoke in both vertical corridors

In evacuation scenarios involving two smoke sources in vertical
corridors operating at full capacity and one smoke source with lower
density in the horizontal passage, the agents had only one exit available
to go through exit B. For the first time, we observed a high number of
deceased agents and significantly increased injuries compared to the last
smoke configuration. However, the evacuation time did not show a
significant change. MANOVA tests provided further insights into the
agents’ health and total evacuation time differences in the simulation
data. The multivariate tests did not demonstrate a significant effect of
any independent variables on the combination of dependent variables.
Further analysis revealed that the training of students significantly
influenced their average final health (F(2, 260) = 3.945, p = 0.021,
partial n2 = 0.029), where those simulations run by 100 % trained
students have a significant difference in terms of agents’ average health
with the simulations conducted by all non-trained students (Mean dif-
ference = 0.5304, SE = 0.19220, p = 0.023).

e Scenarios with heavy smoke in horizontal corridor

In the fourth smoke configuration, the horizontal corridor experi-
enced heavy smoke, while two other vertical corridors were affected by
50 % smoke sources. Consequently, evacuation was only feasible
through gates A and C. These simulations reported the highest number of
deaths (indicating the lowest health statuses) and total evacuation time.
However, the MANOVA tests revealed that there emerged no statisti-
cally significant distinctions among the varying levels of the proportion
of trained agents and teachers’ locations in a linear combination of both
dependent variables (all p > 0.05). Likewise, neither teachers’ positions
nor the proportion of trained students exhibited any discernible impact
on the evacuation total time and agents’ average health statuses.

6. Discussions

Schools function as critical micro-systems within the broader emer-
gency response framework. Limited data on children’s perceptions and
behaviours during emergencies restricts the reliability of school evacu-
ation simulations, leading most studies to rely on movement patterns
and adult psychology to model their behaviour. This study addressed
this need by understanding children’s evacuation behaviour and in-
teractions with hazards, built environments, and safety measures during
emergencies. Consistent with existing studies in system safety during
evacuations and hazard dynamics [14,19], smoke density emerged as a
dominant risk factor causing delayed evacuation time and deteriorated



H. Bahmani et al.

health levels. Introducing smoke into the school environment could
negatively affect evacuation time by up to 76.83 % (£0.735) in the
worst-case scenario. Smoke also negatively impacted health by reducing
agents’ average health by up to 43.94 % (+0.834) when we modelled
having a smoke source in the horizontal corridor. Notably, the lowest
negative impact of smoke on evacuees’ health was observed when heavy
smoke was present only in a vertical corridor, resulting in a 2.68 %
(£0.621) deterioration in the average health.

Contrary to the widespread assumption that teachers are the most
critical facilitators influencing school evacuations’ efficiency, our
investigation reveals a more nuanced picture. We confirmed that
increased adult guides during evacuations, especially during affected
visibility, can supplement the students’ lack of preparedness. However,
the practicality of such an approach is challenging since not all school
staff are available during emergencies, and covering everyone becomes
impossible. Therefore, as an alternative, empowering students with
basic evacuation knowledge emerges as a more sustainable solution.
However, its effectiveness and interaction with teachers’ positioning
vary significantly based on the smoke configuration. For instance, in
scenarios where heavy smoke encumbers exit in the left corridor, stu-
dents’ evacuation preparedness could significantly improve evacuees’
average health by 1.2 % (+£0.463), decreasing the number of casualties
and injuries. In such a scenario, strategic teachers’ positioning
throughout all classrooms and passageways could compensate for the
lack of self-preparedness, effectively reducing evacuation time by
10.475 % (£2.764). On the contrary, assuming having 100 % well-
prepared students, a similar teacher positioning strategy could shorten
evacuation time by 6 % (£3.63). For a single smoke source in a vertical
corridor, a balanced combination of teacher placement and students’
preparedness could lead to more efficient evacuation. Yet, this approach
loses efficacy when smoke dynamics change, particularly when the
horizontal corridor is affected. Interestingly, the findings revealed that
although various safety strategies did not significantly reduce evacua-
tion time in this specific case, they were still effective in saving lives—a
conclusion that aligns with those drawn by [114] . Contrary to Wang
et al. (2023) [13], our model revealed that the strategic positioning of
guides in passways rather than classrooms could significantly reduce
deaths and injuries. This result underscores the necessity for
contingency-based evacuation plans tailored to diverse environmental
conditions and recognises the difficulties in assessing the efficacy of
school evacuation procedures.

We also noted that although all three exits had similar widths, agents
in a hurry tended to choose the closest area of the gate, even if other
areas of the gate were less congested. In exits A and C, agents primarily
utilised the corners of the gates, leaving much of the area unused. On the
other hand, agents arrived at exit B from opposite directions, resulting in
a simultaneous and rapid outflow of agents from both sides of the gate.
Our results are consistent with those of earlier studies published in the
literature [115,116], suggesting that the width of the exit should be
carefully considered during its construction. Increasing the width
beyond a certain level may not effectively alleviate congestion and
smooth the flow during emergencies. Consistent with prior research, we
found that most casualty instances occurred near corridor exits due to
congestion [109].

The practical implications of these findings are profound for school
administrators, urban planners, and emergency managers tasked with
ensuring safety during evacuations. Institutions can adopt more
comprehensive and adaptive evacuation strategies by recognising the
limitations of solely relying on teacher guidance and the challenges
posed by students’ lack of emergency training. Equipping students with
basic evacuation knowledge is crucial, offering a practical solution to
complement teacher-led initiatives. These pre-evacuation trainings, as
discussed by Haghani et al. (2024) [117], may focus on behavioural
modifications to improve the evacuation system’s efficiency from within
rather than seeking outside solutions. This observation highlights the
need for adaptable response strategies that account for fluctuations in
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environmental variables. Integrating these insights into school emer-
gency preparedness protocols and urban safety planning enables in-
stitutions and municipalities to improve their capacity to minimise risks
and safeguard the safety and well-being of individuals during emer-
gencies. Moreover, additional hazard mitigation strategies, such as
smoke ventilation, can be considered to mitigate the health impacts of
smoke [118].

This study, despite its contributions, exhibits some shortcomings that
warrant attention in future research. The simulation initially concen-
trated on a single-story school configuration, as the school administra-
tion prohibited full-building evacuation drills owing to safety
apprehensions. Therefore, lack of empirical data on vertical mobility
during exercises constrained our capacity to develop and validate a
multi-story evacuation model. Toilets and office areas were omitted
from the simulated workplace. This choice was based on the observation
that students rarely use offices during class hours and that restrooms are
generally used briefly and by a limited number of students at any given
time. Subsequent research should seek to integrate vertical circulation
and stairwell dynamics once relevant data is accessible.

Second, while agents were allocated uniform physical attributes (e.
g., movement velocity and body dimensions), we incorporated behav-
ioural diversity by differentiating between “trained” and “untrained”
pupils. These groups demonstrated distinct decision-making techniques,
path selection behaviours, and social interactions (e.g., herding and
pushing). Nevertheless, further individual-level variability, such as
variations in ambulation velocity, situational awareness, and decision-
making latency, was not included and should be addressed in future
models to improve realism and generalizability. We also acknowledge
the simplifying assumption of treating teachers as stationary ‘guide
posts’ in the current model, which does not capture their active role in
escorting students observed during drills. Future work will aim to
incorporate mobile teachers to reflect realistic evacuation behaviours
better and improve model fidelity. Future studies may also investigate
the model’s scalability for urban-scale disasters, integrating mixed-age
and disabled populations, as well as various infrastructure types.

Third, the model utilised a dose-response framework derived from
adult toxicological data owing to the absence of child-specific empirical
evidence. Although DRM concepts were utilised to estimate the poten-
tial decline in children’s health during evacuation, physiological dis-
parities, such as reduced airway dimensions, elevated respiratory rates,
and immature organ systems, likely render children more susceptible to
smoke exposure than adults. The absence of pediatric-specific dose-
response characteristics limited our ability to compare simulated health
outcomes with actual pediatric data directly. Future research must
emphasise the collection of such data to facilitate enhanced, child-
specific health models.

Fourth, the simulation assumed static and homogeneous smoke
dispersion, neglecting the complex fluid dynamics that govern smoke
movement, visibility, and exposure in actual fire situations. Modelling
dynamic smoke behaviour requires the integration of computational
fluid dynamics (CFD) techniques, which are resource-intensive and
exceed the scope of this study. Similarly, fire-structure interactions, such
as flame propagation over materials or smoke generation from non-
structural components, were omitted; however, they can considerably
influence evacuation safety. Future studies must integrate these dy-
namic environmental processes to depict temporal fluctuations in haz-
ard conditions more precisely.

These enhancements would certainly expand the model’s applica-
bility and facilitate more thorough disaster management and urban
resilience initiatives. Nonetheless, such expansions necessitate consid-
erable computational resources, significant data, and interdisciplinary
collaboration—elements that surpass the scope and aims of the current
work. As outlined in Section 4.2.1, ABM deliberately utilises simplified
and abstract representations to encapsulate the fundamental dynamics
of evacuation behaviour, rather than striving for comprehensive real-
world replication. This methodology is well-documented in the
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literature and facilitates concentrated insights into essential behavioural
mechanisms.

7. Conclusions

This study advanced our understanding of children’s evacuation
safety by developing an adaptive and reliable system for addressing
dynamic hazards in primary schools. By integrating TPB and health-risk
qualification (DRM), we extended the existing methodologies in this
field to the children’s population. Our findings on the smoke threshold
and teachers’ positioning offer actionable insights for education set-
tings, emphasising the role of evacuation preparedness and infrastruc-
ture design in system safety. In conclusion, the following key findings
encapsulate the principal insights derived from this study:

e Recommendations for school evacuation plans derived from the
simulation results emphasise prioritising the provision of essential
emergency knowledge to pupils as a crucial element of evacuation
preparedness. This understanding empowers pupils to respond
effectively when teachers or staff are absent or when environmental
conditions alter unexpectedly.

Contingency-based evacuation strategies for various smoke and

hazard scenarios must be developed. Teacher deployment must be

revised in response to environmental conditions, such as intense
smoke, to improve evacuation efficiency and safety by strategically
placing teachers along corridors.

Improving exit design is critical. Exits must be engineered to reduce

congestion, considering exit width, flow dynamics, and possible

bottlenecks, particularly at corridor exits. The simulations suggest
that increasing exit widths above a particular threshold may not
substantially reduce congestion.

e The use of adult guides in specific areas should be emphasised,
particularly in the case of fire emergencies. Strategically positioning
teachers or adult guides in areas where they can assist students most
effectively, such as near exits and in high-density student areas, can
reduce fatalities, especially when students are less prepared.

Ethical approval

This ethical investigation was authorised by Chengdu University of
Technology’s institutional review board. The school management

Appendix

Table X
Student agents’ characteristics in the agent-based model.

Reliability Engineering and System Safety 265 (2026) 111591

provided ethical approval before the evacuation drills, assuring that all
processes followed human participant research ethics.

Informed consent

All participants who participated in the investigation provided
informed assent. Students’ parents were informed about the evacuation
drills and gave their written agreement before participating.

Funding

This work was supported by the National Social Science Foundation
of China (Grant No. 24&ZD164).

CRediT authorship contribution statement

Homa Bahmani: Writing — review & editing, Writing — original
draft, Visualization, Validation, Software, Methodology, Investigation,
Formal analysis, Data curation, Conceptualization. Yibin Ao: Writing —
review & editing, Supervision, Resources, Project administration.
Dujuan Yang: Writing — review & editing, Supervision, Conceptuali-
zation. Qiang Xu: Resources, Funding acquisition. Jianjun Zhao: Re-
sources, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

We would like to thank the National Social Science Foundation of
China (Grant No. 24&ZD164) and the 2023 Integrated Research on
Disaster Risk Young Scientists Program for supporting this research. Any
opinions, findings, and conclusions expressed in this material are those
of the authors and do not necessarily reflect the foundations’ views.
Finally, we are very grateful to Affiliated Primary School of Chengdu
University of Technology and Chengdu Yingcai School for their valuable
advice and support during the research process.

Name of value Range/value Short description
ID 1 to N™ student in the Each agent will be presented with a unique ID to be recognised in the model.
model

Simulation-Location Pxcor Pycor
Class-Location Classroom 1,..., 7
Speed [0.5,..., 1.8]

Retains the agents’ location as the agents’s position will constantly change.
The primary sitting place of the agent.
The study considers the minimum and maximum speeds of 0.5 and 1.8 m/s, respectively, which are subject to be affected by

numerous factors such as smoke, group size, and injury. In each step, the agent will first collect information from neighbours
nearby, such as smoke presence and health level, to set the speed.

Health [0,..., 100]

obstacles encountered.

Trained-Student? 0-100 %
Probability-of-herding- 0-100 %
behavior?

Test-injured? 10 < health <20

Injured? Yes/ no

Test-smoke? Yes/ no

Test-smoke-health? Depending on the smoke
density

The health level of all the student agents’ will be primarily 100, and it will be affected by smoke, crowd-induced force, and

The proportion of trained students among the total population.

Due to the agents’ age and uncertainty in human behaviour, both trained and untrained agents can exhibit herding behaviour,
and training can prevent the frequent occurrence of herding behaviour.

To determine whether an agent has previously been injured, ensuring avoidance of double counting.

To see if the agent is injured (to adjust the speed further).

To see if the agents are in the proximity of 5 patches near the smoke source.

To see if the impact of smoke density on health has been determined.

(continued on next page)
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Table X (continued)
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Name of value Range/value Short description

Distance-Turtle Variable To calculate the distance from the current patch to the selected gate.
Distance-Turtle-Max Variable To calculate the maximum distance of all the patches to the selected gate.
Path-Taken Variable The path taken to exit

Time-Student Variable The agents’ evacuation time

Fixed Yes/ No To verify whether the agent is stuck in congestion for a specific duration or not.
Push Yes/ No Depending on the agent type, they exhibit different pushing behaviours.
Category Gatel/2 Exit choice between gates in the classrooms

Data availability

Data will be made available on request.

References

[1]

[2]

[3]

[4

=

[5]

[6

—

[7

—

[8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Bahmani H, Ao Y, Yang D, Wang D. Students * evacuation behavior during an
emergency at schools : a systematic literature review. Int J Disaster Risk Reduct
2023;87(December 2022):103584. https://doi.org/10.1016/].ijdrr.2023.103584.
Ao Y, Bahmani H. Navigating complexity : understanding human responses to
multifaceted disasters. Springer Nature; 2023.

Zhu R, Lin J, Becerik-Gerber B, Li N. Human-building-emergency interactions and
their impact on emergency response performance: a review of the state of the art.
Saf Sci 2020;127(March):104691. https://doi.org/10.1016/j.s5¢i.2020.104691.
Bulumulla C, Singh D, Padgham L, Chan J. Multi-level simulation of the physical,
cognitive and social. Comput Environ Urban Syst 2022;93(December 2021):
101756. https://doi.org/10.1016/j.compenvurbsys.2021.101756.

G.N. Hamilton, P.F. Lennon, and J. O’Raw, ‘Toward fire safe schools: analysis of
modelling speed and specific flow of children during evacuation drills’, 2020. doi:
10.1007/510694-019-00893-x.

Najmanova H, Ronchi E. An experimental data-set on pre-school children
evacuation. Fire Technol 2017;53(4):1509-33. https://doi.org/10.1007/s10694-
016-0643-x.

Zhang J, et al. Evacuation characteristics of preschool children through
bottlenecks. In: Proceedings from the 9th international conference on pedestrian
and evacuation dynamics (PED2018); 2018. p. 253-61. https://doi.org/
10.17815/¢d.2020.58.

Wang Q, Song W, Zhang J, Ye R, Ma J. Experimental study on knee and hand
crawling evacuation for different age group students. Int J Disaster Risk Reduct
2020;48(December 2019):101613. https://doi.org/10.1016/].ijdrr.2020.101613.
Pinto N, Coelho AL, Gongalves MC, Cordeiro E. Characterization of movement on
vertical circulations. Build Simul 2012;5(4):383-92. https://doi.org/10.1007/
512273-012-0082-7.

Lei W, Li A, Gao R, Zhou N, Mei S, Tian Z. Experimental study and numerical
simulation of evacuation from a dormitory. Phys A: Stat Mech Appl 2012;391
(21):5189-96. https://doi.org/10.1016/j.physa.2012.05.056.

Xu X, Song W. Staircase evacuation modeling and its comparison with an egress
drill. Build Environ 2009;44(5):1039-46. https://doi.org/10.1016/j.
buildenv.2008.07.009.

Chu H, Yu J, Wen J, Yi M, Chen Y. Emergency evacuation simulation and
management optimization in urban residential communities. Sustainability 2019;
11(3). https://doi.org/10.3390/su11030795.

Wang X, et al. A novel method for the risk assessment of human evacuation from
cruise ships in maritime transportation. Reliab Eng Syst Saf Feb. 2023;230.
https://doi.org/10.1016/j.ress.2022.108887.

Kim G, Heo G. Agent-based radiological emergency evacuation simulation
modeling considering mitigation infrastructures. Reliab Eng Syst Saf May 2023;
233. https://doi.org/10.1016/j.ress.2023.109098.

Golshani F, Fang L. A fire navigation model: considering travel time, impact of
fire, and congestion severity. Reliab Eng Syst Saf Jul. 2025;259. https://doi.org/
10.1016/j.ress.2025.110914.

Yamazaki T, Tamai H, Owada Y, Hattori K, Taira S, Hamaguchi K. Urban disaster
simulation incorporating human psychological models in evacuation behaviors.
Springer International Publishing; 2017.

De Iuliis M, Battegazzorre E, Domaneschi M, Cimellaro GP, Bottino AG. Large
scale simulation of pedestrian seismic evacuation including panic behavior.
Sustain Cities Soc Jul. 2023;94. https://doi.org/10.1016/].5¢5.2023.104527.
Lorusso P, De Iuliis M, Marasco S, Domaneschi M, Cimellaro GP, Villa V. Fire
emergency evacuation from a school building using an evolutionary virtual
reality platform. Buildings Feb. 2022;12(2). https://doi.org/10.3390/
buildings12020223.

Luan T, Gai W, Sun D, Dong H. Emergency evacuation risk assessment for toxic
gas attacks in airport terminals: model, algorithm, and application. Reliab Eng
Syst Saf Jan. 2025;253. https://doi.org/10.1016/].ress.2024.110576.

Yuan S, Cai J, Reniers G, Yang M, Chen C, Wu J. Safety barrier performance
assessment by integrating computational fluid dynamics and evacuation
modeling for toxic gas leakage scenarios. Reliab Eng Syst Saf Oct. 2022;226.
https://doi.org/10.1016/j.ress.2022.108719.

16

[21]

[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Cotfas LA, Delcea C, Iancu LD, Ioanas C, Ponsiglione C. Large event halls
evacuation using an agent-based modeling approach. IEEE Access 2022;10:
49359-84. https://doi.org/10.1109/ACCESS.2022.3172285.

Knuth DE. A generalization of Dijkstra’s algorithm. Inf Process Lett 1976;6(1):
1-5. https://doi.org/10.1016,/0020-0190(77)90002-3.

Dorigo M. Ant colony optimization. Scholarpedia 2007;2(3):1461. https://doi.
org/10.4249/scholarpedia.146.

Helbing D, Molnar P. Social force model for pedestrian dynamics. Phys Rev E
1995;51(5):4282-6. https://doi.org/10.1103/PhysRevE.51.4282.

Oh H, Park J. Main factor causing “faster-is-slower” phenomenon during
evacuation: rodent experiment and simulation. Sci Rep Dec. 2017;7(1). https://
doi.org/10.1038/541598-017-14007-6.

Bruch E, Atwell J. Agent-based models in empirical social research. Sociol
Methods Res 2015;44(2):186-221. https://doi.org/10.1177/
0049124113506405.

Pan X, Han CS, Dauber K, Law KH. A multi-agent based framework for the
simulation of human and social behaviors during emergency evacuations. Al Soc
2007;22(2):113-32. https://doi.org/10.1007/500146-007-0126-1.

Templeton A, Xie H, Gwynne S, Hunt A, Thompson P, Koster G. Agent-based
models of social behaviour and communication in evacuations: a systematic
review. Saf Sci 2024;176(April). https://doi.org/10.1016/j.s5¢i.2024.106520.
Taillandier F, Di Maiolo P, Taillandier P, Jacquenod C, Rauscher-Lauranceau L,
Mehdizadeh R. An agent-based model to simulate inhabitants’ behavior during a
flood event. Int J Disaster Risk Reduct 2021;64(n/a):1-16. https://doi.org/
10.1016/j.ijdrr.2021.102503. 102503.

Barnes B, Dunn S, Pearson C, Wilkinson S. Improving human behaviour in
macroscale city evacuation agent-based simulation. Int J Disaster Risk Reduct
2021;60(April):102289. https://doi.org/10.1016/].ijdrr.2021.102289.

Tsai J, et al. ESCAPES - evacuation simulation with children, authorities, parents,
emotions, and social comparison. In: 10th International Conference on
Autonomous Agents and Multiagent Systems 2011. 1. AAMAS; 2011. p. 425-32.
2011.

Elzie TL. Pedestrian evacuation : vulnerable group member influence on the
group leaders * decision-making and the impact on evacuation time. Old
Dominion University; 2022.

Pellacini V, Lawrence P, Galea E. The modelling of pedestrian vehicle interaction
for post-exiting behaviour. Collect Dyn 2020;5:271-9. https://doi.org/10.17815/
¢d.2020.60.

Watts DJ. Should social science be more solution-oriented? Nat Hum Behav 2017;
1(1):0015. https://doi.org/10.1038/541562-016-0015.

Groeneveld J, et al. Theoretical foundations of human decision-making in agent-
based land use models — a review. Elsevier Ltd; Jan. 01, 2017. https://doi.org/
10.1016/j.envsoft.2016.10.008.

Kuligowski ED, Gwynne SMV. The need for behavioral theory in evacuation
modeling. Pedestrian and evacuation dynamics. Springer; 2010. https://doi.org/
10.1007/978-3-642-04504-2.

Okaya M, Takahashi T. Human relationship modeling in agent-based crowd
evacuation simulation. In: Agents in Principle, Agents in Practice - 14th
International Conferencel6-18; 2011. p. 496-507. November2011.

Tsai M-H, Yang C-H, Chen JYichu, Kang S-C. Four-stage framework for
implementing a chatbot system in disaster emergency operation data
management: a flood disaster management case study. KSCE J Civ Eng 2021;25
(2):503-15. https://doi.org/10.1007/s12205-020-2044-4.

Cimellaro GP, Mahin S, Domaneschi M. Integrating a human behavior model
within an agent-based approach for blasting evacuation. Comput-Aided Civ
Infrastruct Eng Jan. 2019;34(1):3-20. https://doi.org/10.1111/mice.12364.
Amini R, Biglari F, Khodaveisi M, Tapak L. Effect of education based on the health
belief model on earthquake preparedness in women. Int J Disaster Risk Reduct
November 2020;52:101954. https://doi.org/10.1016/].ijdrr.2020.101954. 2021.
Inal E, Altintas KH, Dogan N. The development of a general disaster preparedness
belief scale using the health belief model as a theoretical framework. Int J Assess
Tools Educ 2017;(January):146-58. https://doi.org/10.21449/ijate.366825.

Ng Sai Leung. Effects of risk perception on disaster preparedness toward
typhoons: an application of the extended theory of planned behavior. Int J
Disaster Risk Sci 2022;13(1):100-13. https://doi.org/10.1007/513753-022-
00398-2.

Andresen E, Chraibi M, Seyfried A. A representation of partial spatial knowledge:
a cognitive map approach for evacuation simulations. Transp A: Transp Sci 2018;
14(5):433-67. https://doi.org/10.1080/23249935.2018.1432717.


https://doi.org/10.1016/j.ijdrr.2023.103584
http://refhub.elsevier.com/S0951-8320(25)00791-4/sbref0002
http://refhub.elsevier.com/S0951-8320(25)00791-4/sbref0002
https://doi.org/10.1016/j.ssci.2020.104691
https://doi.org/10.1016/j.compenvurbsys.2021.101756
https://doi.org/10.1007/s10694-019-00893-x
https://doi.org/10.1007/s10694-019-00893-x
https://doi.org/10.1007/s10694-016-0643-x
https://doi.org/10.1007/s10694-016-0643-x
https://doi.org/10.17815/cd.2020.58
https://doi.org/10.17815/cd.2020.58
https://doi.org/10.1016/j.ijdrr.2020.101613
https://doi.org/10.1007/s12273-012-0082-7
https://doi.org/10.1007/s12273-012-0082-7
https://doi.org/10.1016/j.physa.2012.05.056
https://doi.org/10.1016/j.buildenv.2008.07.009
https://doi.org/10.1016/j.buildenv.2008.07.009
https://doi.org/10.3390/su11030795
https://doi.org/10.1016/j.ress.2022.108887
https://doi.org/10.1016/j.ress.2023.109098
https://doi.org/10.1016/j.ress.2025.110914
https://doi.org/10.1016/j.ress.2025.110914
http://refhub.elsevier.com/S0951-8320(25)00791-4/sbref0016
http://refhub.elsevier.com/S0951-8320(25)00791-4/sbref0016
http://refhub.elsevier.com/S0951-8320(25)00791-4/sbref0016
https://doi.org/10.1016/j.scs.2023.104527
https://doi.org/10.3390/buildings12020223
https://doi.org/10.3390/buildings12020223
https://doi.org/10.1016/j.ress.2024.110576
https://doi.org/10.1016/j.ress.2022.108719
https://doi.org/10.1109/ACCESS.2022.3172285
https://doi.org/10.1016/0020-0190(77)90002-3
https://doi.org/10.4249/scholarpedia.146
https://doi.org/10.4249/scholarpedia.146
https://doi.org/10.1103/PhysRevE.51.4282
https://doi.org/10.1038/s41598-017-14007-6
https://doi.org/10.1038/s41598-017-14007-6
https://doi.org/10.1177/0049124113506405
https://doi.org/10.1177/0049124113506405
https://doi.org/10.1007/s00146-007-0126-1
https://doi.org/10.1016/j.ssci.2024.106520
https://doi.org/10.1016/j.ijdrr.2021.102503
https://doi.org/10.1016/j.ijdrr.2021.102503
https://doi.org/10.1016/j.ijdrr.2021.102289
http://refhub.elsevier.com/S0951-8320(25)00791-4/sbref0031
http://refhub.elsevier.com/S0951-8320(25)00791-4/sbref0031
http://refhub.elsevier.com/S0951-8320(25)00791-4/sbref0031
http://refhub.elsevier.com/S0951-8320(25)00791-4/sbref0031
http://refhub.elsevier.com/S0951-8320(25)00791-4/sbref0032
http://refhub.elsevier.com/S0951-8320(25)00791-4/sbref0032
http://refhub.elsevier.com/S0951-8320(25)00791-4/sbref0032
https://doi.org/10.17815/cd.2020.60
https://doi.org/10.17815/cd.2020.60
https://doi.org/10.1038/s41562-016-0015
https://doi.org/10.1016/j.envsoft.2016.10.008
https://doi.org/10.1016/j.envsoft.2016.10.008
https://doi.org/10.1007/978-3-642-04504-2
https://doi.org/10.1007/978-3-642-04504-2
http://refhub.elsevier.com/S0951-8320(25)00791-4/sbref0037
http://refhub.elsevier.com/S0951-8320(25)00791-4/sbref0037
http://refhub.elsevier.com/S0951-8320(25)00791-4/sbref0037
https://doi.org/10.1007/s12205-020-2044-4
https://doi.org/10.1111/mice.12364
https://doi.org/10.1016/j.ijdrr.2020.101954
https://doi.org/10.21449/ijate.366825
https://doi.org/10.1007/s13753-022-00398-2
https://doi.org/10.1007/s13753-022-00398-2
https://doi.org/10.1080/23249935.2018.1432717

H. Bahmani et al.

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Veeraswamy A, Lawrence PJ, Galea ER. Implementation of cognitive mapping,
spatial representation and wayfinding behaviours of people within evacuation
modelling tools. In: Human Behaviour in Fire Symposium 2009; 2009. p. 501-12.
Von Sivers I, Templeton A, Koster G, Drury J, Philippides A. Humans do not
always act selfishly: social identity and helping in emergency evacuation
simulation. Transp Res Procedia 2014;2:585-93. https://doi.org/10.1016/j.
trpro.2014.09.099.

Feng X, Jiang Y, Gai W. Rural community response to accidental toxic gas release:
an individual emergency response model during self-organized evacuations.
Reliab Eng Syst Saf Aug. 2024;248. https://doi.org/10.1016/].ress.2024.110178.
Lu P, Li Y. Agent-based fire evacuation model using social learning theory and
intelligent optimization algorithms. Reliab Eng Syst Saf Mar. 2025:111000.
https://doi.org/10.1016/j.ress.2025.111000.

Mao Y, Yang S, Li Z, Li Y. Personality trait and group emotion contagion based
crowd simulation for emergency evacuation. Multimed Tools Appl 2020;79(5-6):
3077-104. https://doi.org/10.1007/s11042-018-6069-3.

Tang TQ, Chen L, Guo RY, Shang HY. An evacuation model accounting for
elementary students’ individual properties. Phys A: Stat Mech Appl 2015;440:
49-56. https://doi.org/10.1016/j.physa.2015.08.002.

Chang D, Cui L, Huang Z. A cellular-automaton agent-hybrid model for
emergency evacuation of people in public places. IEEE Access 2020;8:79541-51.
https://doi.org/10.1109/ACCESS.2020.2986012.

Xiao ML, Zhang Y, Liu B. Simulation of primary school-aged children’s
earthquake evacuation in rural town. Nat Hazards 2017;87(3):1783-806. https://
doi.org/10.1007/s11069-017-2849-8.

Liu R, Jiang D, Shi L. Agent-based simulation of alternative classroom evacuation
scenarios. Front Archit Res 2016;5(1):111-25. https://doi.org/10.1016/].
foar.2015.12.002.

Zhu R, Lucas GM, Becerik-Gerber B, Southers EG, Landicho E. The impact of
security countermeasures on human behavior during active shooter incidents. Sci
Rep 2022;12(1):1-16. https://doi.org/10.1038/s41598-022-04922-8.

Zhou Y, Wei J. Risk analysis and evacuation research on crowded students for
colleges and universities’ emergencies. Key Eng Mater 2010;439-440(6):766-71.
https://doi.org/10.4028/www.scientific.net/KEM.439-440.766.

Tonescu Stefan, Nica I, Chirita N. Cybernetics approach using agent-based
modeling in the process of evacuating educational institutions in case of disasters.
Sustainability 2021;13(18). https://doi.org/10.3390/su131810277.

Chen L, Tang TQ, Song Z, Huang HJ, Guo RY. Child behavior during evacuation
under non-emergency situations: experimental and simulation results. Simul
Model Pr Theory 2019;90(August 2018):31-44. https://doi.org/10.1016/].
simpat.2018.10.007.

A. Poulos, F. Tocornal, J.C. de la Llera, and J. Mitrani-Reiser, ‘Validation of an
agent-based building evacuation model with a school drill’, 2018. doi: 10.1016/j.
trc.2018.10.010.

Delcea C, Cotfas LA. Increasing awareness in classroom evacuation situations
using agent-based modeling. Phys A: Stat Mech Appl 2019;523:1400-18. https://
doi.org/10.1016/j.physa.2019.04.137.

Delcea C, Cotfas LA, Bradea IA, Bolos MI, Ferruzzi G. Investigating the exits’
symmetry impact on the evacuation process of classrooms and lecture halls: an
agent-based modeling approach. Symmetry 2020;12(4):627. https://doi.org/
10.3390/SYM12040627.

Gu Z, Liu Z, Shiwakoti N, Yang M. Video-based analysis of school students’
emergency evacuation behavior in earthquakes. Int J Disaster Risk Reduct 2016;
18:1-11. https://doi.org/10.1016/].ijdrr.2016.05.008.

Bandecchi AE, Pazzi V, Morelli S, Valori L, Casagli N. Geo-hydrological and
seismic risk awareness at school: emergency preparedness and risk perception
evaluation. Int J Disaster Risk Reduct 2019;40:101280. https://doi.org/10.1016/
j.ijdrr.2019.101280.

Najmanova H, Ronchi E. An experimental data-set on pre-school children
evacuation. Fire Technol 2017;53(4):1509-33. https://doi.org/10.1007/s10694-
016-0643-x.

Chen L, Tang TQ, Song Z, Guo RY, Huang HJ. Empirical investigation of child
evacuation under non-emergency and emergency situations. J Transp Saf Secur
2022;14(4):585-606. https://doi.org/10.1080/19439962.2020.1793858.

Ajzen I. The theory of planned behavior. Organ Behav Hum Decis Process 1991;
50(2):179-211. https://doi.org/10.1016/0749-5978(91)90020-T.

Cao S, Fu L, Wang P, Zeng G, Song W. Experimental and modeling study on
evacuation under good and limited visibility in a supermarket. Fire Saf J 2018;
102(August):27-36. https://doi.org/10.1016/j.firesaf.2018.10.003.

Cao S, Liu X, Chraibi M, Zhang P, Song W. Characteristics of pedestrian’s
evacuation in a room under invisible conditions. Int J Disaster Risk Reduct 2019;
41(May):101295. https://doi.org/10.1016/j.ijdrr.2019.101295.

Fu M, Liu R, Zhang Y. Why do people make risky decisions during a fire
evacuation? Study on the effect of smoke level, individual risk preference, and
neighbor behavior. Saf Sci 2021;140(April):105245. https://doi.org/10.1016/j.
ss5¢i.2021.105245.

Yan M, Fan Z, Zhao J, Zhang Q, He W. An emotional contagion based simulation
for emergency evacuation peer behavior decision. Simul Model Pract Theory Nov.
2019;96. https://doi.org/10.1016/j.simpat.2019.101936.

Chen L, Tang TQ, Song Z, Guo RY, Huang HJ. Empirical investigation of child
evacuation under non-emergency and emergency situations. J Transp Saf Secur
2022;14(4):585-606. https://doi.org/10.1080/19439962.2020.1793858.
Najmanova H, Ronchi E. Experimental data about the evacuation of preschool
children from nursery schools, part II: movement characteristics and behaviour.
Fire Saf J 2023;139(March):103797. https://doi.org/10.1016/j.
firesaf.2023.103797.

17

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]
[96]

[97]

[98]

Reliability Engineering and System Safety 265 (2026) 111591

Shoji M, Takafuji Y, Harada T. Behavioral impact of disaster education: evidence
from a dance-based program in Indonesia. Int J Disaster Risk Reduct 2020;45
(January):101489. https://doi.org/10.1016/j.ijdrr.2020.101489.

Shoji M, Takafuji Y, Harada T. Formal education and disaster response of
children: evidence from coastal villages in Indonesia. Nat Hazards 2020;103(2):
2183-205. https://doi.org/10.1007/5s11069-020-04077-7.

Adiyoso W, Kanegae H. Effectiveness of disaster-based school program on
students’ earthquake-preparedness. J Disaster Res 2013;8(5):1009-17. https://
doi.org/10.20965/jdr.2013.p1009.

Zheng L, Guo Y, Peeta S, Wu B. Impacts of information from various sources on
the evacuation decision-making process during no-notice evacuations in campus
environment. J Transp Saf Secur 2020;12(7):892-923. https://doi.org/10.1080/
19439962.2018.1549643.

Ding N, Sun C. Experimental study of leader-and-follower behaviours during
emergency evacuation. Fire Saf J October 2019;117:103189. https://doi.org/
10.1016/j.firesaf.2020.103189. 2020.

Chen L, Tang TQ, Huang HJ, Song Z. Elementary students’ evacuation route
choice in a classroom: a questionnaire-based method. Phys A: Stat Mech Appl
2018;492:1066-74. https://doi.org/10.1016/j.physa.2017.11.036.

Makinoshima F, Oishi Y. Crowd flow forecasting via agent-based simulations with
sequential latent parameter estimation from aggregate observation. Sci Rep Dec.
2022;12(1). https://doi.org/10.1038/541598-022-14646-4.

Hamilton GN, Lennon PF, O’'Raw J. Toward fire safe schools: analysis of
modelling speed and specific flow of children during evacuation drills. Springer
US 2020;56(2). https://doi.org/10.1007/510694-019-00893-x.

Najmanova H, Ronchi E. An experimental data-set on pre-school children
evacuation. Fire Technol 2017;53(4):1509-33. https://doi.org/10.1007/s10694-
016-0643-x.

Hamilton GN, Lennon PF, O’'Raw J. Human behaviour during evacuation of
primary schools: investigations on pre-evacuation times, movement on stairways
and movement on the horizontal plane. Fire Saf J 2017;91(May):937-46. https://
doi.org/10.1016/j.firesaf.2017.04.016.

Xie W, Lee EWM, Cheng Y, Shi M, Cao R, Zhang Y. Evacuation performance of
individuals and social groups under different visibility conditions: experiments
and surveys. Int J Disaster Risk Reduct 2020;47(October 2019):101527. https://
doi.org/10.1016/j.ijdrr.2020.101527.

Chen L, Tang TQ, Song Z, Huang HJ, Guo RY. Child behavior during evacuation
under non-emergency situations: experimental and simulation results. Simul
Model Pract Theory 2019;90(August 2018):31-44. https://doi.org/10.1016/j.
simpat.2018.10.007.

Zang Y, Mei Q, Liu S. Evacuation simulation of a high-rise teaching building
considering the influence of obstacles. Simul Model Pract Theory Nov. 2021;112.
https://doi.org/10.1016/j.simpat.2021.102354.

Cao L, Lin J, Li N. A virtual reality based study of indoor fire evacuation after
active or passive spatial exploration. Comput Hum Behav 2019;90(August 2018):
37-45. https://doi.org/10.1016/j.chb.2018.08.041.

Zhou ZX, Nakanishi W, Asakura Y. Route choice in the pedestrian evacuation:
microscopic formulation based on visual information. Phys A: Stat Mech Appl
2021;562:125313. https://doi.org/10.1016/j.physa.2020.125313.

Cascio WE. Wildland fire smoke and human health. Sci Total Environ 2018;624:
586-95. https://doi.org/10.1016/j.scitotenv.2017.12.086.

Hunter AL, et al. Fire simulation and cardiovascular health in firefighters.
Circulation 2017;135(14):1284-95. https://doi.org/10.1161/
CIRCULATIONAHA.116.025711.

Liang H, Yang L, Du J, Shu CW, Wong SC. Modelling crowd pressure and
turbulence through a mixed-type continuum approach. Transportmetrica B 2024;
12(1). https://doi.org/10.1080/21680566.2024.2328774.

Naili M, Bourahla M, Naili M. Stability-based model for evacuation system using
agent-based social simulation and Monte Carlo method. Int J Simul Process Model
2019;14(1):1-16. https://doi.org/10.1504/1JSPM.2019.097702.

Dai Q, Zhu X, Zhuo L, Han D, Liu Z, Zhang S. A hazard-human coupled model
(HazardCM) to assess city dynamic exposure to rainfall-triggered natural hazards.
Environ Model Softw May 2020;127. https://doi.org/10.1016/j.
envsoft.2020.104684.

Zhang C, Wu X, Chen J, Shen H. Research on escalators used as evacuation stairs
under fire scenarios. Sci Rep Dec. 2023;13(1). https://doi.org/10.1038/s41598-
023-43784-6.

Brower AE, et al. Augmenting the Social Vulnerability Index using an agent-based
simulation of Hurricane Harvey. Comput Environ Urban Syst Oct. 2023;105.
https://doi.org/10.1016/j.compenvurbsys.2023.102020.

Calabrese EJ. The emergence of the dose-response concept in biology and
medicine. Int J Mol Sci 2016;17(12). https://doi.org/10.3390/ijms17122034.
Grimm V, et al. A standard protocol for describing individual-based and agent-
based models. Ecol Modell 2006;198(1-2):115-26. https://doi.org/10.1016/j.
ecolmodel.2006.04.023.

Richiardi M, Leombruni R, Saam N, Sonnessa M. A common protocol for agent-
based social simulation. Jasss 2006;9(1):245-66.

M.W. Macy and R. Willer, ‘From factors to actors: computational sociology and
agent-based modeling’, 2002. doi: 10.1146/annurev.soc.28.110601.141117.
Smith ER, Conrey FR. Agent-based modeling: a new approach for theory building
in social psychology. Personal Soc Psychol Rev 2007;11(1):87-104. https://doi.
org/10.1177/1088868306294789.

Bahmani H, Ao Y, Yang D, Xu Q, Zhao J. Towards safer educational facilities:
computational and observational analysis of evacuation processes in primary
schools. Dev Built Environ Oct. 2025;23:100698. https://doi.org/10.1016/j.
dibe.2025.100698.


http://refhub.elsevier.com/S0951-8320(25)00791-4/sbref0044
http://refhub.elsevier.com/S0951-8320(25)00791-4/sbref0044
http://refhub.elsevier.com/S0951-8320(25)00791-4/sbref0044
https://doi.org/10.1016/j.trpro.2014.09.099
https://doi.org/10.1016/j.trpro.2014.09.099
https://doi.org/10.1016/j.ress.2024.110178
https://doi.org/10.1016/j.ress.2025.111000
https://doi.org/10.1007/s11042-018-6069-3
https://doi.org/10.1016/j.physa.2015.08.002
https://doi.org/10.1109/ACCESS.2020.2986012
https://doi.org/10.1007/s11069-017-2849-8
https://doi.org/10.1007/s11069-017-2849-8
https://doi.org/10.1016/j.foar.2015.12.002
https://doi.org/10.1016/j.foar.2015.12.002
https://doi.org/10.1038/s41598-022-04922-8
https://doi.org/10.4028/www.scientific.net/KEM.439-440.766
https://doi.org/10.3390/su131810277
https://doi.org/10.1016/j.simpat.2018.10.007
https://doi.org/10.1016/j.simpat.2018.10.007
https://doi.org/10.1016/j.trc.2018.10.010
https://doi.org/10.1016/j.trc.2018.10.010
https://doi.org/10.1016/j.physa.2019.04.137
https://doi.org/10.1016/j.physa.2019.04.137
https://doi.org/10.3390/SYM12040627
https://doi.org/10.3390/SYM12040627
https://doi.org/10.1016/j.ijdrr.2016.05.008
https://doi.org/10.1016/j.ijdrr.2019.101280
https://doi.org/10.1016/j.ijdrr.2019.101280
https://doi.org/10.1007/s10694-016-0643-x
https://doi.org/10.1007/s10694-016-0643-x
https://doi.org/10.1080/19439962.2020.1793858
https://doi.org/10.1016/0749-5978(91)90020-T
https://doi.org/10.1016/j.firesaf.2018.10.003
https://doi.org/10.1016/j.ijdrr.2019.101295
https://doi.org/10.1016/j.ssci.2021.105245
https://doi.org/10.1016/j.ssci.2021.105245
https://doi.org/10.1016/j.simpat.2019.101936
https://doi.org/10.1080/19439962.2020.1793858
https://doi.org/10.1016/j.firesaf.2023.103797
https://doi.org/10.1016/j.firesaf.2023.103797
https://doi.org/10.1016/j.ijdrr.2020.101489
https://doi.org/10.1007/s11069-020-04077-7
https://doi.org/10.20965/jdr.2013.p1009
https://doi.org/10.20965/jdr.2013.p1009
https://doi.org/10.1080/19439962.2018.1549643
https://doi.org/10.1080/19439962.2018.1549643
https://doi.org/10.1016/j.firesaf.2020.103189
https://doi.org/10.1016/j.firesaf.2020.103189
https://doi.org/10.1016/j.physa.2017.11.036
https://doi.org/10.1038/s41598-022-14646-4
https://doi.org/10.1007/s10694-019-00893-x
https://doi.org/10.1007/s10694-016-0643-x
https://doi.org/10.1007/s10694-016-0643-x
https://doi.org/10.1016/j.firesaf.2017.04.016
https://doi.org/10.1016/j.firesaf.2017.04.016
https://doi.org/10.1016/j.ijdrr.2020.101527
https://doi.org/10.1016/j.ijdrr.2020.101527
https://doi.org/10.1016/j.simpat.2018.10.007
https://doi.org/10.1016/j.simpat.2018.10.007
https://doi.org/10.1016/j.simpat.2021.102354
https://doi.org/10.1016/j.chb.2018.08.041
https://doi.org/10.1016/j.physa.2020.125313
https://doi.org/10.1016/j.scitotenv.2017.12.086
https://doi.org/10.1161/CIRCULATIONAHA.116.025711
https://doi.org/10.1161/CIRCULATIONAHA.116.025711
https://doi.org/10.1080/21680566.2024.2328774
https://doi.org/10.1504/IJSPM.2019.097702
https://doi.org/10.1016/j.envsoft.2020.104684
https://doi.org/10.1016/j.envsoft.2020.104684
https://doi.org/10.1038/s41598-023-43784-6
https://doi.org/10.1038/s41598-023-43784-6
https://doi.org/10.1016/j.compenvurbsys.2023.102020
https://doi.org/10.3390/ijms17122034
https://doi.org/10.1016/j.ecolmodel.2006.04.023
https://doi.org/10.1016/j.ecolmodel.2006.04.023
http://refhub.elsevier.com/S0951-8320(25)00791-4/sbref0095
http://refhub.elsevier.com/S0951-8320(25)00791-4/sbref0095
https://doi.org/10.1146/annurev.soc.28.110601.141117
https://doi.org/10.1177/1088868306294789
https://doi.org/10.1177/1088868306294789
https://doi.org/10.1016/j.dibe.2025.100698
https://doi.org/10.1016/j.dibe.2025.100698

H. Bahmani et al.

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

Lovreglio R, Spearpoint M, Girault M. The impact of sampling methods on
evacuation model convergence and egress time. Reliab Eng Syst Saf May 2019;
185:24-34. https://doi.org/10.1016/j.ress.2018.12.015.

Feng D, Ji L. Development of a self-administered questionnaire to assess the
psychological competencies for surviving a disaster. Disaster Med Public Health
Prep 2014;8(3):220-8. https://doi.org/10.1017/dmp.2014.42.

Cotfas LA, Delcea C, Iancu LD, Ioanas C, Ponsiglione C. Large event halls
evacuation using an agent-based modeling approach. IEEE Access 2022;10:
49359-84. https://doi.org/10.1109/ACCESS.2022.3172285.

Najmanova H, Ronchi E. Experimental data about the evacuation of preschool
children from nursery schools, part I: pre-movement behaviour. Fire Saf J 2023;
138(March):103798. https://doi.org/10.1016/j.firesaf.2023.103798.

Yao Y, Lu W, Wang L. Experimental study on evacuation behaviour of children in
a three-storey kindergarten. Heliyon 2023;9(6):e16533. https://doi.org/
10.1016/j.heliyon.2023.e16533.

Bahmani H, et al. Implications for improving evacuation safety in primary school
corridors : a video-based analysis on evacuees ’ speed and density. Eng Constr
Archit Manag 2024. https://doi.org/10.1108/ECAM-01-2024-0017.

Zhou Z, Zhu X, Li X. Impact of classroom facilities on evacuation and its
simulation. In: Proceedings - 2020 International Conference on Wireless
Communications and Smart Grid, ICWCSG 2020; 2020. p. 393-7. https://doi.org/
10.1109/ICWCSG50807.2020.00090.

Battegazzorre E, Bottino A, Domaneschi M, Cimellaro GP. IdealCity: a hybrid
approach to seismic evacuation modeling. Adv Eng Softw Mar. 2021;153. https://
doi.org/10.1016/j.advengsoft.2020.102956.

D’Evelyn SM, et al. Wildfire, smoke exposure, human health, and environmental
justice need to be integrated into forest restoration and management. Springer
Science and Business Media Deutschland GmbH; Sep. 01, 2022. https://doi.org/
10.1007/540572-022-00355-7.

Stares Joanne. Evidence review: use of evacuation to protect public health during
wildfire smoke events [Online]. Available, www.bccdc.ca; 2014.

Oh H, Park J. Main factor causing “faster-is-slower” phenomenon during
evacuation: rodent experiment and simulation. Sci Rep Dec. 2017;7(1). https://
doi.org/10.1038/541598-017-14007-6.

18

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

Reliability Engineering and System Safety 265 (2026) 111591

Chu H, Yu J, Wen J, Yi M, Chen Y. Emergency evacuation simulation and
management optimization in urban residential communities. Sustainability 2019;
11(3). https://doi.org/10.3390/su11030795.

Delcea C, Cotfas LA, Craciun L, Molanescu AG. An agent-based modeling
approach to collaborative classrooms evacuation process. Saf Sci 2020;121
(September 2019):414-29. https://doi.org/10.1016/j.55¢1.2019.09.026.

Liu J, et al. Research on scenario extrapolation and emergency decision-making
for fire and explosion accidents at university laboratories based on BN-CBR.
Reliab Eng Syst Saf Jan. 2025;253. https://doi.org/10.1016/].ress.2024.110579.
J. Carbo and N. Sanchez-pi, ‘J. Carbo, N. Sanchez-Pi & J.M. Molina (2018) Agent-
based simulation with NetLogo to evaluate ambient agent-based simulation with
Netlogo to Evaluate AmlI Scenarios’, pp. 42-52, 2018, doi: 10.1057/j0s.2016.10.
Mirahadi F, McCabe B, Shahi A. IFC-centric performance-based evaluation of
building evacuations using fire dynamics simulation and agent-based modeling.
Autom Constr May 2019;101:1-16. https://doi.org/10.1016/j.
autcon.2019.01.007.

Xie Q, Wang J, Lu S, Hensen JLM. An optimization method for the distance
between exits of buildings considering uncertainties based on arbitrary
polynomial chaos expansion. Reliab Eng Syst Saf 2016;154:188-96. https://doi.
org/10.1016/j.ress.2016.04.018.

Lei W, Li A, Gao R. Effect of varying two key parameters in simulating evacuation
for a dormitory in China. Phys A: Stat Mech Appl 2013;392(1):79-88. https://doi.
org/10.1016/j.physa.2012.07.064.

Haghani M, Yazdani M. How simple behavioural modifications can influence
evacuation efficiency of crowds: part 1. Decision making of individuals. Transp
Res Part C Emerg Technol Sep. 2024;166. https://doi.org/10.1016/j.
trc.2024.104763.

Yu A, Bu H, Luan T, Gai W. Integrated multi-agent-based outpatient building fire
response modeling for risk-driven resource use and retrofitting strategies: a case
study. Reliab Eng Syst Saf Aug. 2025;260:110970. https://doi.org/10.1016/j.
ress.2025.110970.


https://doi.org/10.1016/j.ress.2018.12.015
https://doi.org/10.1017/dmp.2014.42
https://doi.org/10.1109/ACCESS.2022.3172285
https://doi.org/10.1016/j.firesaf.2023.103798
https://doi.org/10.1016/j.heliyon.2023.e16533
https://doi.org/10.1016/j.heliyon.2023.e16533
https://doi.org/10.1108/ECAM-01-2024-0017
https://doi.org/10.1109/ICWCSG50807.2020.00090
https://doi.org/10.1109/ICWCSG50807.2020.00090
https://doi.org/10.1016/j.advengsoft.2020.102956
https://doi.org/10.1016/j.advengsoft.2020.102956
https://doi.org/10.1007/s40572-022-00355-7
https://doi.org/10.1007/s40572-022-00355-7
http://www.bccdc.ca
https://doi.org/10.1038/s41598-017-14007-6
https://doi.org/10.1038/s41598-017-14007-6
https://doi.org/10.3390/su11030795
https://doi.org/10.1016/j.ssci.2019.09.026
https://doi.org/10.1016/j.ress.2024.110579
https://doi.org/10.1057/jos.2016.10
https://doi.org/10.1016/j.autcon.2019.01.007
https://doi.org/10.1016/j.autcon.2019.01.007
https://doi.org/10.1016/j.ress.2016.04.018
https://doi.org/10.1016/j.ress.2016.04.018
https://doi.org/10.1016/j.physa.2012.07.064
https://doi.org/10.1016/j.physa.2012.07.064
https://doi.org/10.1016/j.trc.2024.104763
https://doi.org/10.1016/j.trc.2024.104763
https://doi.org/10.1016/j.ress.2025.110970
https://doi.org/10.1016/j.ress.2025.110970

	Enhancing evacuation safety in urban primary schools: an agent-based model integrating child development behaviour and heal ...
	1 Introduction
	2 Related works
	2.1 Advancements in emergency evacuation studies
	2.2 Research on children’s emergency evacuation

	3 Background
	3.1 Evacuation decision-making mechanism and theory of planned behaviour
	3.2 Evacuation movements and dynamics facts
	3.3 Health risks associated with smoke

	4 Research methods and framework
	4.1 Evacuation drills
	4.2 Children evacuation modelling framework
	4.2.1 Evacuation decision-making and behaviour rules
	4.2.2 Evacuation movements
	4.2.3 Agents’ health attributes

	4.3 Model features and entities
	4.4 Model calibration and validation
	4.5 Model experimentation

	5 Results
	5.1 Comprehensive sensitivity analysis
	5.2 Speed trends change
	5.3 Intra-group variability assessment: smoke configuration-based

	6 Discussions
	7 Conclusions
	Ethical approval
	Informed consent
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix
	Data availability
	References


