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A B S T R A C T

Primary schools require specific evacuation plans considering children’s developmental vulnerabilities, but 
current models frequently overlook children’s behavioural and health dynamics. Our proposed reliability-driven 
agent-based modelling (ABM) framework incorporates the Theory of Planned Behaviour (TPB) for decision- 
making and Dose-Response Model (DRM) for quantifying health hazards associated with smoke exposure, 
aiming to close this gap. Using real-world evacuation data from an urban primary school, we simulate risk 
scenarios to assess interactions between evacuation efficiency, environmental risks, and safety regulations. Re
sults show that smoke density significantly affects system reliability, increasing evacuation time by 43.94% 
(±0.834) and decreasing evacuee health by 76.83% (±0.735) in the worst-case scenario. We found that more 
adult guides during evacuations could compensate for students’ unpreparedness. However, teacher placement’s 
efficacy and interaction vary greatly depending on smoke patterns. This outcome highlights the need for 
contingency-based evacuation plans customised to different environmental circumstances and acknowledges the 
challenges in evaluating the effectiveness of school evacuation strategies. This work contributes to schools’ 
system safety by offering adaptive solutions for dynamic risks, emphasising the importance of child-specific 
reliability specifications in school emergency planning. The framework offers practical ideas for urban resil
ience, enabling organisations to mitigate health hazards and enhance the safety of critical infrastructures in 
uncertain environments.

1. Introduction

In the urban context, where high population density can exacerbate 
situations, the capacity to evacuate quickly and in an orderly manner is 
critical to reducing hazards and improving safety. Therefore, getting a 
deeper understanding of mass evacuation is of significant importance. 
Human reactions to emergencies can be evaluated through two stages: a) 
evacuation decision-making and b) the individual’s evacuation move
ment. Evacuation decision-making is initiated from the first moment of 
reacting to a hazard [1] and ends once the evacuee chooses their way of 
escaping the hazard. This process, therefore, can be influenced by 
evacuees’ personality features, built environment, and hazardous nature 
[1,2]. Afterwards, evacuees’ movements and their interactions with 
each other, the environment, and hazards would significantly influence 
evacuation efficiency [3,4]. Individuals’ evacuation movements are 
often evaluated through advanced data collection methods, such as 

recorded experiments, and yield rich databases of movement dynamics 
across various age groups [5–8] and evacuation scenarios [9–11].

In recent years, hybrid methodologies have advanced the accurate 
assessment of evacuation risk. Chu et al. (2019) propose an evacuation 
simulation system for Shanghai’s residential emergency management 
[12]. This system linked residential complexes’ indoor and outdoor 
components to residents’ demographic and geographical attributes, 
improving evacuation efficiency. Other studies have combined failure 
model analysis with Bayesian networks for maritime evacuation simu
lations [13]. Scholars also merged traffic flow models with radiological 
dispersion simulation to better anticipate the effectiveness of emergency 
response [14]. An innovative study employed fire dynamics simulation 
alongside with active dynamic signage system to communicate real-time 
optimal save paths with evacuees [15]. Another study developed an 
urban disaster evacuation simulation model using human psychology 
models [16]. Battegazzorre et al. (2021) present a novel framework, 
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IdeaCity, in which ABM is used in large-scale seismic evacuation simu
lations to model the built environment and transportation network 
system [17]. Tested in a town of Turin in Italy, the model could estimate 
the building damage and debris caused by earthquake scenarios and 
evaluate the interactions between the built environment, people and 
emergency management service capacities in the town. Later, this model 
was further expanded by adding a panic behavioural layer, which 
highlights the necessity of considering humans’ psychology in massive 
evacuation simulations to obtain more accurate predictions of the se
quences [17]. Studies also integrated building information modelling 
and virtual reality to simulate a fire accident on a campus, advancing 
this field of research by incorporating top-notch technologies and the 
use of computational fluid dynamics in modelling the impacts of fire 
emergencies on the evacuation process [18]. Nevertheless, these models 
prioritise adult populations and infrastructures, overlooking children’s 
behaviour and psychological vulnerabilities. There exist some studies 
like Luan et al. (2025) [19] which aims to develop an enhanced Extreme 
Learning Machine model for rapid evacuation risk assessment in 
educational institutions, emphasising its importance in mitigating 
congestion and trampling to enhance safety and emergency response 
effectiveness. However, the study consisted of college students with 
adult-like physical and mental characteristics.

In the school setting, where children make up a significant propor
tion of the population, underdeveloped cognitive, physical and 
emotional capabilities can greatly influence evacuation behaviour. This 
matter is more critical in young children [6,8]. Engineers of evacuation 
systems still face the significant challenge of designing reliable protocols 
considering children’s decision-making processes and health vulnera
bilities. Tailored models incorporating these vulnerabilities improve 
evacuation safety and inform scalable measures for educational in
stitutions during emergencies. Our research addresses this deficiency by 
including the Theory of Planned Behaviour (TPB) and the 
Dose-Response Model (DRM) within the Agent-Based Modelling (ABM) 
framework, thereby enhancing methodologies employed in maritime 
evacuation risk assessment [13], chemical plants toxic gas leakage ac
cidents [20], and radioactive emergencies [14]. However, we highlight 
children’s behavioural thresholds and health deterioration due to smoke 
exposure and use evacuation drill data to confirm the model’s reliability. 
TPB could account for the reasons behind children’s evacuation 
behaviour and incorporating the DRM into the modelling framework 
allows us to establish a scientifically grounded framework for modelling 
the health dynamics of evacuees during an emergency evacuation. This 
study then applies the modelling framework to simulate children’s 
evacuation behaviour and safety dynamics on the first floor of a selected 
primary school.

The main contributions of this work are: a) introducing a new 
modelling framework to simulate children’s evacuation under emer
gency, enhancing the reliability of evacuation protocols for cognitively 
developing population, b) including a dynamic track of smoke exposure 
on children’s health and addressing a critical gap in evacuation studies 
prioritising adult population, c) providing actionable evacuation safety 
strategies based on hazard dynamics which can be scalable strategies to 
optimise school safety. The remaining sections of the paper are organ
ised as follows: The contrasts and relevance of prior research to this 
work are discussed in Section 2. Next, Section 3 provides a brief back
ground and lays the foundation for understanding the research frame
work. Section 4 describes the framework details, followed by simulation 
results in Section 5. Section 6 delves into discussions and provides 
strategies for future work, and the paper concludes with the study’s 
concluding remarks in Section 7.

2. Related works

2.1. Advancements in emergency evacuation studies

Modelling human evacuation is challenging due to the complexities 

in representg the elements that influence human collective behaviour 
during emergencies [21]. Algorithms used to study human evacuation 
behaviour, such as Dijkstra’s [22], colony optimisation [23], and 
Depth-First Search, have limitations in accurately depicting complex 
human behaviour because they ignore psychological factors and popu
lation relationships. Later, advances in computer processing capacity led 
to the emergence of the social-force model in 1995, one of the most 
well-known models for modelling pedestrian evacuation [24]. While 
social force models capture some aspects of human psychology and have 
been extended later, they often assume a homogeneous population to 
simulate human behaviour and are difficult to implement due to several 
nonlinear equations [21].

Cellular automata and ABM are the most widely employed micro
scopic models in evacuation research. Although cellular automata 
models can offer relatively suitable solutions for the complexity of 
human social systems, their limitations in capturing agents’ free 
movement [25] make ABM a more compelling tool [26]. Some studies in 
the field of evacuation simulations expand the ABM features by defining 
that crowd behaviour should be considered within three levels: Indi
vidual behaviour, interactions among them, and group behaviour [27]. 
Another study unveiled several social interactions in the context of 
agent-based evacuation models, illustrating the intricate social in
teractions and decision-making during evacuation [28]. Studies also 
considered GIS-based data [29], demographic and movement dynamics 
of agents [30], disaster knowledge and the emotional cognition effects 
imposed by civilians and authority figures [31], and the effects of ve
hicles’ presence on pedestrian decision-making [32,33] to model evac
uation scenarios by ABM.

Despite the previous attempt to study human evacuation behaviour, 
the difficulty of considering complex factors affecting individuals’ 
behaviour and the lack of social and behavioural theories [34] leads to 
ad-hoc approaches to identifying human behaviour in simulation studies 
[35,36]. To blend social and cognitive features with physical evacuation 
modelling, studies applied the Belief-Desire-Intention model in ABM and 
evaluated the effect of proper guidance on the efficiency of crowd 
evacuation [4,37–39]. Evacuation decision-making has also been 
explained by the Emergency Decision-Making Strategy [1]. Health Belief 
Model has been employed to assess disaster preparedness [40,41]. 
Another study applied an extended TPB to explore how risk perception 
influenced disaster preparedness behaviour [42]. Researchers also uti
lised cognitive mapping to develop wayfinding algorithms integrating 
ABM to simulate various levels of spatial awareness [43] and to present a 
more realistic approach to wayfinding [44]. The Social Identity Model 
has also been employed to predict pedestrian movement during emer
gency evacuations [45]. Crowd behaviour in poisonous gas release and 
fire accidents was modelled in recent studies using the OCEAN person
ality model and Social-Learning Theory, respectively [46,47].

2.2. Research on children’s emergency evacuation

Due to psychological and physical differences between children and 
adults, scientists have employed simulation approaches to examine 
children’s evacuation behaviour in numerous ways. The first group of 
studies has contributed to how individuals’ characteristics and in
teractions impact evacuation time and speed [48,49]. Secondly, the ef
fects of the built environment on students’ evacuation behaviour have 
been focused on [50,51]. Simulations of recent seismic evacuations, 
such as those of a middle school in Sichuan province during the 2008 
Wenchuan earthquake [50] and a primary school affected by the 2014 
Ludian earthquake in China [51], have examined how the layout designs 
of these schools affect evacuation times. Thirdly, the geometric features 
of schools and classroom layouts have been explored in combination 
with individuals’ characteristics and interactions [52–55]. A unique 
study used video drills to replicate children’s evacuation, but the model 
failed to account for children’s interactions with the built environment 
and the emergency [56].
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Despite notable progress, prior research on evacuation simulation of 
children has been somewhat constrained, often focusing on specific 
factors such as agent types, social dynamics, and school layouts. Schools, 
where children spend most of their time, are often crowded places where 
one-by-one accompaniment by an adult during an emergency is not 
practical. The studies frequently focus on single-room evacuations or 
vertical/horizontal evacuations [57–59], overlooking the modelling of 
evacuations for entire building floors. On the other hand, children’s 
evacuation is more chaotic than that of adults due to physical and psy
chological differences, which impose greater risks to their safety [60]. 
Although studies attempted to understand the movement dynamics of 
children considering body size, age, gender, and various built environ
ment features [61,62], the limited availability of empirical data on the 
evacuation behaviour of young children constrains simulation studies. 
Lastly, implementing structural changes in already constructed schools 
can be expensive and impractical. Thus, secondary safety-enhancing 
measures, such as trained teachers and students, are needed to miti
gate risk factors arising during emergencies and require further study 
[63]. Therefore, there remains significant potential to fully leverage the 
benefits of evacuation simulation tools, particularly ABM, to provide 
sufficient evacuation safety protocols designed explicitly for children’s 
characteristics.

3. Background

Modelling children’s evacuation environments necessitates 
designing a science-based modelling framework. In this study, we inte
grate TBP to provide a logical decision-making mechanism. Combining a 
health-simulating model with evacuation time and dynamics in school 
evacuations offers more profound insights into unexpected events. DRM 
has then defined the hazard’s health impacts to simulate more realistic 
health outcomes in emergency scenarios.

3.1. Evacuation decision-making mechanism and theory of planned 
behaviour

TPB is a psychological framework explaining how individuals’ 
behaviour is influenced by “individuals’ attitude”, “subjective norms”, 
and “perceived behavioural control” [64]. Several studies have suc
cessfully used TPB to model intentions related to evacuation decisions 
and disaster preparedness behaviours [4,35]. It provides a structured 
framework through its core constructs—attitudes, subjective norms, and 
perceived behavioral control—to represent evacuation decision pro
cesses. While TPB may not fully capture the dynamic, high-stress, and 
heuristic-driven behaviors during real-time evacuations, it remains a 
valuable tool for modeling the intentional aspects of evacuation de
cisions. Integrating TPB enhances behavioral modeling by linking in
tentions to actions, and our approach incorporates these cognitive 
dimensions while acknowledging the need for future work to address 
evacuation’s full complexity.

The term “attitude” describes a person’s views of the results or re
percussions of behaviour, which societal influence, personal values, and 
life experiences can influence. In the context of emergency evacuation, 
individuals’ attitudes towards emergencies may include beliefs 
regarding the possible harm or danger they pose. Previous studies 
showed that under low visibility, pedestrians are more likely to follow 
neighbours, assist each other, and navigate along obstacles [65]. 
Another study revealed that when visibility is limited, pedestrians 
follow specific movement patterns, such as searching for walls and 
interacting differently with others, influencing their evacuation strate
gies and distances travelled [66]. A recent VR-based study also illus
trated that individuals’ risky decisions during fire evacuation are 
associated with their risk tolerance, smoke density, and neighbours’ 
behaviour [67].

The second element of TPB refers to perceived social pressure or 
influence from others that affects individuals’ intentions and behaviour. 

Researchers have also examined the possibility of using emotional 
contiguity and intimacy as predictors of evacuee decision-making [68]. 
Luan et al. (2025) proved that structured guidance (vs free evacuation) 
could reduce passengers’ risky behaviour in escaping through airport 
terminals [19]. Given the children’s inadequate psychological capacity 
to meet their demands during emergencies, subjective norms may in
fluence their evacuation behaviour. The literature indicates that the 
relationship between adult guidance and students’ evacuation choices 
remains inconclusive, with some studies failing to establish a significant 
association [69]. Meanwhile, others suggest that under emergency 
conditions, evacuation patterns become imbalanced when children 
evacuate without adult guidance [69]. However, research confirmed 
that children responded more immediately to adult instructions than to 
the warning system [70].

The third component of TPB pertains to an individual’s confidence in 
their ability to execute an activity successfully. Evacuation training 
helps enhance this confidence by teaching people the necessary skills for 
effective evacuations [71–74]. On the other hand, behavioural ratio
nality is crucial in children’s evacuation efficiency, reflecting how they 
make logical decisions during evacuation [49]. Similar studies on 
behavioural modelling with a focus on human psychological factors in 
evacuation simulations integrated rationality and its influence on 
evacuees’ decision-making [39]. Moreover, in emergencies, stable group 
formations may be disrupted [75], leading individuals to exhibit herd 
behaviour, particularly among young children [74,76]. Subsequent 
studies explored this phenomenon by simulating a specific group of 
agents known as “herders”, characterized by distinct route selection 
behavior [77].

3.2. Evacuation movements and dynamics facts

Previously, a clear and strong association between evacuation speed 
and the age of children has been found; as the age increases, the evac
uation speed also increases [78,79]. Studies also identified evidence 
demonstrating the considerable influence of teachers’ guidance on stu
dents’ emergency response time [60,79,80]. Additionally, individuals 
typically form groups based on their social connections, and the char
acteristics of these groups directly influence walking velocity [81]. 
Literature evidence indicates that children evacuating in groups of two 
or three experience longer evacuation times. This fact is due to increased 
delays stemming from the larger proportion of students exhibiting group 
behaviour and the size of the groups [82]. Research also revealed that 
unobstructed corridors and suitable desk configurations in classrooms 
significantly enhance evacuation efficiency [83]. Reduced visibility and 
its impact on evacuation speeds is another crucial element, where, due 
to the lack of data on children’s evacuation speeds during reduced vis
ibility, we had to rely on adult speed data to understand evacuation 
dynamics better, specifically evacuation speed, time, and exit follow 
[75,81]. On the other hand, a virtual reality study proved that people 
would try to avoid smoke sources, potentially increasing evacuation 
time [84]. The experiments also demonstrated that walking speed de
creases from 0.63 to 0.4 as smoke density varies [81]. Another related 
study showed that ideal visibility enhances rapid and confident 
mobility, but low visibility requires cautious navigation, possibly 
resulting in delays as individuals manoeuvre to circumvent obstructions 
[85]. Therefore, the children’s evacuation movement can be influenced 
by factors such as age, teacher guidance, visibility, obstacles, and group 
size, with larger groups often causing delays.

3.3. Health risks associated with smoke

Emergencies, such as fire accidents, can have an immediate impact 
on evacuees’ health. Smoke exposure during fire accidents impacts the 
body by activating lung receptors, inducing oxidative stress and 
inflammation, and penetrating beyond the lungs, leading to systemic 
effects [86]. Research on firefighters subjected to extreme heat and 
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physical exertion has shown that they may experience a higher risk of 
myocardial ischaemia, impaired vascular function, and increased blood 
clot formation [87]. On the other hand, in crowd disasters, as crowds 
grow, panic rises, creating an amplifying feedback loop and direct 
causes like crowd pressure, which causes falls, trampling, and fatalities 
[88]. With that, studies such as Naili et al. (2019) attempted to predict 
agents’ health using ABM [89]. Later, scholars developed a spatiotem
poral dynamic exposure model to determine the flood-related proba
bility of injury or death. A hazard-human coupled model (HazardCM) is 
used to assess city dynamic exposure to rainfall-triggered natural haz
ards and the likelihood of injury or death [90]. Zhang et al. (2023) opted 
to identify the potential hazards of smoke and fire on human safety [91]. 
Another study utilised ABM to develop a social vulnerability index, 
predicting the health outcomes of populations exposed to Hurricane 
Harvey [92]. In a novel framework by Golshani et al. (2025) [15], 
Fractional Effective Dose model was embodied in ABM to address the 
coupled impacts of fire, heat, and toxic gas on evacuees’ health and 
egress time.

However, there is a shortage of health theories incorporated into 
child evacuation simulation models to address dynamic interactions 
between exposure level, duration, and health outcomes. To close this 
gap, we incorporated the DRM in evacuation modelling. DRM is a key 
concept in toxicology and environmental health sciences that links 
environmental agent dose to health consequences. This strategy is based 
on the premise that the severity of a health effect is determined by both 
the intensity (dose) and duration of exposure [93].

4. Research methods and framework

4.1. Evacuation drills

The empirical data used in building the modelling framework were 
collected through meticulous data analysis of six recorded video drills 
(listed in Table 1) conducted in the two classrooms of the affiliated 
primary school of the XXX. The school layout is illustrated in Fig. 1. To 
assess evacuation duration, speed, and student behaviour, this study 
adjusted the teachers’ fixed locations and smoke emissions, reflecting 
that teachers remained stationary and did not escort students during 
both drills and simulations. Students received evacuation training from 
their teachers, whom the research team had previously educated. 
Hearing the warning, students began the experiment, which terminated 
when everyone reached the safe zone. Three smoke machines, with 
manufacturer-verified safety and health effects, altered visibility. The 
evacuation drills were recorded using 1080P HD CCTV cameras.

4.2. Children evacuation modelling framework

Fig. 2 presents the ABM integrated framework, which uniquely in
tegrates TPB for reasoning in decision-making and DRM for health-risk 
qualification. Empirical data on actual evacuation movements en
hances the model’s accuracy, ensuring that the simulated evacuation 
dynamics closely reflect real-world scenarios. Note that the study 
referred to available data from previous studies in each stage of creating 
the modelling framework, or the research team conducted evacuation 

drills. To ensure the transparency and reproducibility of the modelling 
process, the Overview, Design Concepts, and Details document protocol 
(ODD) has been followed [94]. Additionally, recognising many ABM 
models’ shortcomings, the study followed comprehensive guidelines to 
verify the model’s validity and alignment with real-world scenarios, as 
published by Richiardi et al. (2006) [95].

4.2.1. Evacuation decision-making and behaviour rules
In this work, the implementation of TPB was demonstrated to be 

efficient in improving simulation assumptions and operating guidelines. 
As shown in computational sociology and ABM, simpler models are 
purposefully used to show the complexity of evacuation dynamics rules 
[96]. This approach corresponds with the primary goal of ABM philos
ophy, which is building an abstracted system representation over 
real-world replication [97]. According to the introduction of the 
research background in Section 3.1, each element of TPB and its ratio
nality in constructing the model framework is given below:

Individuals’ attitude: As discussed earlier, fire can lead to specific 
evacuation behaviour different from what is observed during normal 
visibility evacuations. Through our evacuation drills, students exhibited 
hasty decision-making, initiating evacuation once smoke was intro
duced to the experiments (Fig. 3). Previous observations also revealed 
similar findings, as evacuation from school corridors showed that low 
visibility was the most significant factor affecting children’s exit choices 
[98]. Therefore, in building the evacuation modelling framework, we 
assume that smoke affects children’s behaviour and that they stay away 
from smoke sources. We further detailed the model assumption by 
referring to a study by Fu et al. (2021), which suggested that smoke 
density is another important factor affecting evacuees’ decision-making 
[67]. Hence, in constructing the ABM model, agents (students) are 
allowed unrestricted movement towards patches with a smoke density 
below 50 %. However, when encountering higher smoke density, agents 
opt for alternative patches while maintaining a minimum distance of 
three patches.

Subjective norms: Studies in the field of pre-announced classroom 
evacuation experiments set the pre-evacuation time from 8–20 s [99]. In 
our drills, we observed that the teacher’s guidance greatly impacted 
students’ first reactions. Teachers led students to evacuate within two 
seconds of hearing the warning, whereas, for those without teacher 
assistance, evacuation took up to 12 s (Fig. 4). Therefore, the model 
randomly assigned first reaction times to agents based on whether or not 
teachers were present in the classroom, with agents who lacked teacher 
guidance receiving longer reaction times.

Previous research on influential factors affecting children’s evacua
tion time manifested the profound impact of adult mentors in the cor
ridors [98]. This fact is confiremed by the curent stuudy’s observations, 
as there is a significant difference in total evacuation time between drills 
with and without teachers guiding students in the corridors, as shown in 
Fig. 5. However, according to the mentioned study, the adult’s guidance 
did not significantly influence the children’s classroom exit choices (p =
0.555, Coefficient(B) = 0.697, Odds Ratio = 2.007). Therefore, the ABM 
model initially excludes teachers’ influence on children’s classroom 
evacuation escape options.

Perceived behavioural control: As discussed in Section 3.1, 

Table 1 
Evacuation drills set up and results.

Experiments Teacher numbers in: Visibility Duration (sec.) Participants

Classrooms Corridor Boys Girls

Exp 1–1 0 0 Good 74 46 31
Exp 1–2 2 2 Good 46 36 30
Exp 1–3 1 (classroom 1) 1 Good 104 40 22
Exp 1–4 0 0 Low 82 47 37
Exp 1–5 2 2 Low 37 44 36
Exp 1–6 1 (classroom 1) 1 Low 150 45 41
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Fig. 1. Layout of the selected school (Dimensions are presented based on the “Meter”.).

Fig. 2. Research framework and steps.
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behavioural rationality and evacuation training were considered in 
developing the model. Considering the influence of training on people’s 
wayfinding and patch selection behaviour [47,100], we distinguish 
between two main groups of student agents: “trained” and “non-trained 
students”. Both groups chose the nearest gate to exit, a consideration 
primarily found in the relevant literature [55,59,101]. While the trained 
students act rationally, the untrained students selfishly choose their path 
and movement behaviour. Trained students prioritise travel distance in 
their movement decisions, while untrained agents consider both the 
proximity to the selected gate and areas with lower population density. 
Given the frequent observation of peer-following behaviour through our 
drills, the model considered the possibility of exhibiting “herding 
behaviour” for both groups. However, it is essential to note that the 
likelihood of displaying herding behaviour is lower among trained in
dividuals. The wayfinding behaviour of each group of agents is deter
mined as follows: 

• Trained students select the closest patches to the chosen gate by 
considering the travel distance: 

Desired travel distance = (Dmax − Di)/(Dmax − Dmin) (1) 

Where Dmax is the farthest distance of all patches, Dmin is the closest 
distance of all patches. Di is the travel distance from the target patch i to 
its nearest gate. 

• Non-trained students prioritise the most appealing patch based on 
both the shortest distance to the selected gate and the lowest popu
lation density along the route: 

Desired patch = α ∗ Desired travel distance + β

∗ Desired population density(min) (2) 

Fig. 3. Hasty decision-making in low visibility drills.

Fig. 4. First reaction time, Left) guided by the teacher, Right) no teacher guided.

Fig. 5. Evacuation time categorised by adult guidance in the corridors and visibility condition.
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Where α and β are constants that define the influence of travel dis
tance and population density on attraction, with values α = 2 and β = 2. 
The “desired population density (min)” is calculated as: 

Desired population density(min) = (Pmax − Pi)/(Pmax − Pmin) (3) 

Where Pmax is the highest population density among all patches, Pmin 
is the lowest population density, Pi is the population density of patch i, 
computed as: 

Pi = Ni
/
(2 ∗ R + 1)2 (4) 

Where Ni is the total number of agents within the search radius, and 
R is the search radius. 

• Herders, on the other hand, are attracted to areas with higher 
population density and are more likely to follow crowds by using: 

Desired populationdensity(max) = (Pi − Pmin)/(Pmax − Pmin) (5) 

Pushing behaviour may also emerge due to the individual’s percep
tion of a lack of control over their own movement or feeling pressed by 
others. Based on studies such as Liu et al. (2016) [52], this research 
considered identical pushing behaviour of each agent group of students. 
The rational behaviour of trained students will result in no-pushing 
behaviour, whereas a lack of evacuation training causes pushing the 
front neighbour among untrained students, particularly when they are 
waiting in a single path for more than three ticks. Herders will exhibit 
pushing behaviour if one of their neighbours initiates pushing. In 
evacuation scenarios, a brief delay often occurs as individuals cogni
tively process the emergency before taking action—a phase known as 
pre-evacuation time. This delay, which can range widely in children 
from 3 to 59 s [102], reflects the time needed to perceive risk and decide 
on appropriate responses. Observations from our drills and other studies 
[103] show that children typically start by following instructions and 
may only exhibit pushing behaviour after about a 3-second pause when 
movement is impeded or crowding increases. To realistically capture 
this, our model incorporates a fixed 3-second delay before pushing 
behaviour initiates, balancing empirical evidence with model simplicity. 
Fig. 6 provides a dynamic view showing the events’ sequence that 
characterises the simulation experiment. Note that, apart from the 
previously mentioned rules, all agents are programmed to avoid colli
sions and obstacles.

4.2.2. Evacuation movements
In this study, we adopt a speed range of 0.5 to 1.8 m/s, derived from 

experimental studies investigating the evacuation speeds of children 
aged 6 to 9 [78,79]. However, given the environmental factors, evac
uees’ speed can change. According to a recent study on children’s 
evacuation speed and density, teachers’ guidance in the school corridors 
positively and significantly impacted children’s evacuation speed [104]. 
Low visibility is another factor with proven negative impacts on the 
evacuees’ speed, previously discussed in Section 3.2. In total, low visi
bility would potentially lead to hasty evacuation due to slower human 
motion in search of careful navigation. Therefore, referring to the 
simulation study by Ionescu et al. (2021) [55], this study assumed that 
introducing teachers into the environment enhances the speed by eight 
per cent, reflecting a positive influence on the overall efficiency of the 
evacuation process. We also assumed that smoke in the corridors would 
reduce agents’ speed within a five-patch radius of the smoke source by 
two per cent for any density level. Group walking is another element 
influencing evacuation speed. Furthermore, in building the ABM model, 
the influence of group walking on the speed of agents was assessed, as 
obtained from a simulation study by Zhou et al. (2020) [105]. Note that 
agents’ health also affected their speed, where severely injured agents 
experienced a speed decrease (See Section 4.2.3. for more details on 

modelling evacuees’ health attributes).

4.2.3. Agents’ health attributes
The immediate health impacts of emergencies on individuals can 

significantly influence the outcomes of evacuation processes. Large- 
scale seismic evacuation simulations incorporated agents’ health con
ditions by accounting for building damage levels in indoor settings and 
debris accumulation in outdoor environments [106]. In our model, the 
agents’ health ranged from 0 to 100, with 100 primarily assigned to all 
the student agents at the beginning of the simulations. Studies on toxic 
gas attacks and evacuation simulations have revealed that longer gas 
release durations and delayed evacuations can significantly increase the 
average exposure risk [19]. Similar findings have been presented in 
studies of radiological emergencies, where delaying the release of 
radiological material reduced exposure risk [14]. Incorporating DRM, 
the study first considered the effects of fire smoke on agents’ health; the 
agents’ health decreases as a function of both the level of exposure to 
harmful elements (e.g., smoke) and the duration of that exposure. 
Emergency medical reports indicate that immediate symptoms from 
exposure to heavy smoke can appear within seconds to minutes [107,
108]. Given children’s smaller airways and higher breathing rates, this 
time span can be even shorter, and the resulting health deterioration 
more severe. Children are notably more susceptible to smoke exposure 
than adults, particularly due to carbon monoxide (CO) poisoning, and 
can become incapacitated at lower exposure levels. However, there is 
limited research on children’s immediate health deterioration during 
fire incidents, largely due to ethical constraints preventing experimental 
exposure in this vulnerable population. Consequently, studies like ours 
must rely on adult physiological data, often derived from relatively 
healthy populations such as firefighters, to inform parameter settings. 
Therefore, due to this lack of direct pediatric data and ethical limita
tions, we adopted a conservative 5-second exposure threshold and tested 
its impact through sensitivity analysis. The cut-off point for health 
decline—such as a 30 % decrement—is also based on empirical adult 
studies and applied repeatedly as long as the agent remains exposed, 
consistent with DRM principles. Supporting this approach, Purser (2002) 
highlights that children are highly susceptible to smoke, exhibiting 
escape-impairing symptoms at carboxyhemoglobin (COHb) levels as low 
as 25 %. Dense smoke (≥15 g/m³) can incapacitate sensitive individuals 
within minutes, indicating that even brief exposure to very dense smoke 
can cause rapid health deterioration in children. On the other hand, 
lower-density smoke exposure results in a lesser health impact, with a 10 
% decrease for agents exposed to smoke densities below 50 %.

Second, we also incorporated agent-based rules that capture agent 
types and situational factors as defined in previous sections to model 
adverse health effects from pushing and physical contact between the 
agents. For example, if agents face obstacles, such as dead agents, their 
health is reduced by 2 %, and when others push agents into the crowd, 
their health is further compromised by 2.5 %. While this approach does 
not directly measure the magnitude of social force between agents to 
predict casualties [109], it captures realistic consequences of over
crowding and lack of personal space, leading to aggressive physical in
teractions. These rules are consistent with the DRM in that they account 
for additional stressors that impact agents’ health over time, contrib
uting to an overall decline in health in the simulation.

We also used thresholds for serious injury and death. Agents with 
health levels between 10 and 20 are seriously injured, while those below 
nine are dead. These criteria enable us to identify the point at which 
agents’ health has deteriorated and survival is no longer feasible.

4.3. Model features and entities

The model framework was applied to the selected population, and 
the information for the model was collected from the chosen school 
administration. The school’s first floor comprises seven classrooms, two 
offices, and two restrooms. For simulation purposes, we focused solely 
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Fig. 6. Overview of agents’ movement through the simulation environment.
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on the classrooms and corridors as the available paths for escape, 
excluding the offices and restrooms. The first floor of the primary school 
has been graphically drawn in NetLogo 6.4.0 using patch agents. In 
general, two types of classrooms are considered: One with a length of 9 
m and the other with a length of 12 m The first classroom can accom
modate 44 students, while the second one has been designed to provide 
seats for 38 students, as shown in Fig. 7. In the model, every patch equals 
0.3 × 0.3 m, and every tick equals 1 s. The students’ shoulder size has 
also been set to 0.3 according to the available studies pointing to the 
shoulder size of Chinese primary school students [52,110]. Each patch 
can only be occupied by one agent. The size of the school furniture has 
been relatively adjusted to be multiples of 0.3.

The environmental elements used for pathfinding have been recog
nised by patch colour as follows: walls (black), gates (red), walkable 
corridors (blue), and the yard (safe zone, purple). Smoke sources, placed 
in three fixed locations near each exit (smoke 1, 2, and 3), allow for the 
evaluation of smoke’s impact on evacuation efficiency, with smoke 
density adjustable as a percentage (0–100 %). The simulation ends when 
all the students reach the safe zone (yard). Each agent is represented by a 
coloured circle corresponding to their role: dark red for students of all 
types, green for classroom teachers, light red for teachers in the corri
dors, fire icons (with darker shades indicating higher density) for fire, 
and blue for deceased students. The student agents were divided into 
three distinct types based on their route selection and movement 
behaviour: trained students, untrained students, and herder students 
(herders), as described in Section 4.2.1, and their characteristics used in 
the model are given in Table X. Students are seated behind their class
room desks, with their locations randomly assigned to accommodate 
varying classroom capacities as needed. Teachers are fixed agents who 
stand behind the lectern in classes or between classroom gates in cor
ridors every nine meters.

The Graphical User Interface (GUI) of NetLogo (presented in Fig. 8) 
allows users to modify several factors related to population size in each 
classroom, the overall proportion of trained students, the likelihood of 
herding behaviour for both trained and non-trained students, and the 
positioning of teachers. Additionally, users can adjust the configuration 
of smoke sources, enabling changes in smoke density for each source. 
Results are presented in the form of total evacuation time, variations in 
aggregated speed and agents’ health over time, and the average distance 
travelled by the agents, number of herders and trained agents, and 
number of dead and injured agents.

When constructing a realistic model, a combination of stochastic and 
deterministic treatments is necessary. Stochasticity has already been 
applied by considering variations in agent behaviour, smoke density 
configurations, randomness in agents’ initial reaction times, and the 
probability of turning (un)trained students into herders. Deterministic 
treatment of fate is also considered in the building layout, evacuation 
route choice, exit selection rules for each type of agent, initial positions 

of agents, movement speeds, and teachers’ positions.

4.4. Model calibration and validation

Before initiating simulations, model parameters must be adjusted to 
match real-world conditions and agent behaviour during the evacuation 
drill. To calibrate the model, firstly, we ensured that the population of 
agents accurately represented a known real-world population by 
providing modules rooted in empirical evidence for their behaviours. 
Secondly, we verified that the model output could be converted into 
real-time units. Lastly, we acquired field data from a drill conducted at 
the same school for comparison with the model output [26]. Attention 
should be paid to the fact that the model’s accuracy has been validated 
for the movement time and speed rules of agents, with the agents’ health 
being excluded from the scope of calibration due to the unavailability of 
real-time data.

Notably, the evacuation drill for model calibration considered 
classrooms one and two under good visibility conditions (no smoke). 
Each classroom had one teacher, and two teachers were stationed in the 
corridors in front of each classroom. Classroom One accommodated 21 
students, while Classroom Two had 15 students. The total evacuation 
time recorded was 31 s, and trajectory analysis revealed that students 
followed the rule of selecting the nearest exit gate. The behavioural rules 
were adjusted accordingly through multiple model runs. Recognising 
that achieving a 100 % match was not feasible due to stochastic ele
ments, model outputs frequently vary between simulation runs. In 
alignment with the calibration method proposed by Delcea, Cotfas, 
Craciun, et al. 2020 [111], we determined the model to be successfully 
calibrated when the simulated results fell within the range accounting 
for a five per cent error margin (acceptable error of ±1.55 s) and pro
ceeded to simulate the model under various scenarios. Additionally, 
model validation, which determines the degree to which the model 
accurately represents the simulation [32], has also been assessed by 
evaluating the validity of model structure, model behaviour, and pro
gram [95].

4.5. Model experimentation

We adopted a scenario-based simulation [112] to examine human 
interactions with the built environment, hazards, and safety measures. 
This study has developed 36 simulation scenarios to explore factors such 
as smoke density, placement of adult guidance, and the proportion of 
trained students. All seven classrooms operate at full capacity to 
accommodate students (each simulation had 278 agents), with agents 
initially starting at 100 % health. These scenarios are divided into four 
major categories based on smoke density, and each is further segmented 
into sub-scenarios to analyse the impact of different variables (guidance 
position and students’ training) on simulation outcomes (Table 2). To 

Fig. 7. Layout of the selected school (Dimensions are presented based on the “Meter”.).
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streamline the simulations, the probability of exhibiting herding 
behaviour for trained and non-trained students is set at 30 % and 70 %, 
respectively. According to the available studies and guidelines, each 
sub-scenario is simulated 30 times [113], and the average values are 
used for subsequent analysis. It is important to note that evacuation time 
is recorded in seconds, and health level is calculated as a percentage. For 
simplicity, we will use “heavy smoke source” when smoke positions are 
at 100 % density and avoid detailing that other smoke source(s) are 
simultaneously set at 50 % density.

5. Results

This section presents three analyses: a sensitivity study on parame
ters’ effects, speed trends under smoke conditions, and intra-group 
variability in evacuation influenced by smoke, training, and teacher 
positions.

Fig. 8. GUI of the model.

Table 2 
Scenarios’ features.

Scenarios characteristics

Smoke density (four main simulation 
groups)

No smoke 
Source 1 & 3: 100 % and source 2: 50 % 
Source 1 & 3: 50 % and source 2: 100 % 
Source 1: 100 % and sources 2 & 3: 100 
%

Positions of adult guidance In all classrooms 
In all corridors 
In all classrooms and corridors

Percentage of trained students 0 % 
50 % 
100 %

H. Bahmani et al.                                                                                                                                                                                                                               Reliability Engineering and System Safety 265 (2026) 111591 

10 



5.1. Comprehensive sensitivity analysis

Sensitivity analysis enables researchers to systematically examine 
the effect of parameters’ variations across a spectrum of plausible sce
narios rather than relying on fixed parameter configurations for accurate 
assessments [26]. This section employed sensitivity analysis, a robust 
method to investigate the impact of smoke configuration partially, 
teachers’ position and numbers, trained students and response in evac
uation total time and agents’ health. Fig. 9 shows multiple bar charts, 
each of which is a dual-level chart depicting the fraction of untrained 
agents and the placements of teachers. On the next level, it marks four 
smoke spots. Separate bars show evacuation time, death toll, and 
injuries.

The optimal safety strategy was thought to involve the presence of 
teachers in both classrooms and corridors. However, based on simula
tion results presented in Fig. 9, its effect on evacuation time cannot be 
universally generalised, as students’ training is another important factor 
influencing total evacuation time. For example, in scenarios where the 
agents are entirely untrained, the importance of teachers’ positioning 
and number becomes evident as smoke severity increases. In most 
simulations conducted with heavy smoke, the multiple use of adults’ 
guidance can reduce evacuation time. However, for scenarios where the 
proportion of trained students increased, altering teachers’ locations or 
utilising them in multiple locations did not positively impact the evac
uation time of reducing agents when faced with smoke. This finding 
suggests that students may encounter challenges in low-visibility con
ditions when provided with numerous adult guidance and evacuation 
instructions.

By comparing scenarios divided by teachers’ positioning, we 
observed that when teachers are only available in classrooms and a se
vere smoke source is present in the horizontal corridor, the increase in 
the proportion of trained students may have a detrimental effect on the 

death toll. However, in similar scenarios without smoke, the positive 
impact of students’ training on reducing injuries was evident. 
Contrarily, when teachers were solely present in the passage during 
heavy smoke in a single vertical corridor, students’ training positively 
impacted evacuation time. Nevertheless, this factor demonstrated con
flicting effects on the evacuation time of students guided by teachers in 
the classrooms, particularly in scenarios where heavy smoke simulta
neously affected either the horizontal or two vertical corridors. There
fore, in most cases, positioning teachers in classrooms increases 
potential health hazards for students.

Through all iterations, when severe smoke sources were present in 
the horizontal corridor, having teachers in both corridors and class
rooms or exclusively in corridors demonstrated superior performance in 
reducing the death toll compared to relying solely on adults’ guidance 
within classrooms. This conclusion was consistent across all simulation 
sets involving various proportions of trained students. However, 
employing multiple teachers’ guidance slightly increased total evacua
tion time in most scenarios.

The comparison within the inner graphs revealed a significant 
change in evacuation time and the number of deaths associated with 
smoke configurations. This increase was consistently highest in sce
narios where the horizontal corridor was heavily affected by dense 
smoke, regardless of the proportion of trained students or teachers’ 
location. In such conditions, students from three classrooms in a hori
zontal corridor were unable to exit through the nearest gate (exit B) and 
were forced to choose alternative exits for escape. Apart from scenarios 
with heavy smoke in the horizontal corridor, a steady linear increase in 
death toll was observed, starting from smoke-free observations to sce
narios with one or two heavy smoke sources in the vertical corridor(s). 
However, no similar pattern for total evacuation time was observed. 
Despite anticipating longer evacuation times in scenarios with two 
simultaneous smoke sources, considering two additional factors and the 

Fig. 9. Charts for sensitivity analysis.
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randomness of parameters in simulations contradicted this initial 
expectation.

5.2. Speed trends change

The initial noteworthy observation regarding the impact of smoke on 
children’s movement behaviour was the noticeable change in their 
average speed. Similar trends have been observed for the simulations in 
each smoke configuration category. To illustrate this trend while 
maintaining simplicity in the data presentation, Fig. 10 exclusively de
picts the speed change over ticks for smoke configurations where the 
proportion of trained students was set to 50 %, and teachers were 
positioned in both corridors and classrooms. The average speed initially 
decreases across three smoke configurations—smoke-free, smoke source 
in one vertical corridor, and smoke sources in two vertical corridors. 
Subsequently, the average speed increases upon reaching a certain level, 
which is associated with decreased density near exits. This increase is 
particularly pronounced when agents escape through environments 
with two heavily dense smoke sources in the vertical corridors. The 
likely reason for this sharp increase is the placement of smoke sources at 
the corridors’ endpoints, prompting agents to choose alternate exits. As 
a result, agents spend less time in these locations and move quickly to
wards exit B. Despite agents having two exits to select from, the slope of 
the speed increase is less in scenarios with one heavy smoke source in 
the left corridor. One possible explanation is that agents’ exposure to 
low-density smoke in the right corridor affects their speed and health, as 
they still opt to exit through Gate C. Interestingly, despite the significant 
change in average speed, evacuation times remain nearly identical for 
these two smoke configurations. In the smoke-free scenario, the speed 
also exhibits a decrease followed by an increase; however, after a while, 
a steady speed is observed until the end of the evacuation, which lasts for 
a shorter duration than the evacuations above. Notably, setting a single 
heavy smoke source in the horizontal corridor and two weak smoke 
sources in other corridors results in a continual decrease in average 
speed.

5.3. Intra-group variability assessment: smoke configuration-based

The sensitivity analysis findings showed that the smoke configura
tion significantly impacted the total evacuation time and agents’ health 
status. Thus, MANOVA analysis was employed to investigate the influ
ence of students’ training and teachers’ positions on total evacuation 
time and average final health across four different smoke density com
binations. Before conducting MANOVAs, the study meticulously 
assessed the test’s assumptions. We checked the existence of outliers in 
each subset of the dataset using Mahalanobis distance and examined the 
linear relationships between each pair of dependent variables within 
each independent variable group. Next, multivariate normality was 
assessed using the Shapiro-Wilk test, and multicollinearity among the 
dependent variables was examined. MANOVA analysis was then per
formed using SPSS 24, and the assumption of equality of covariance 
matrices was also verified. The agents’ average final health and evacu
ation total time for each scenario is given in Table 3. 

• No-smoke scenarios (baseline scenarios)

The fewest fatalities and injuries occurred during the smoke-free 
evacuation simulations, indicating that the school layout can provide 
a safe evacuation plan free from significant fire incidents. All exits 
exhibited a constant flow rate, as students distributed themselves 
equally among the closest exits, with Gate B showing the highest flow 
rate per second. However, despite examining the impacts of students’ 
training and the positioning of adults’ guidance on total evacuation time 
and average agents’ health statuses, MANOVA test revealed no statisti
cally significant differences across the levels of the proportion of trained 
agents and teachers’ locations in a linear combination of both dependent 
variables (all p > 0.05). Additionally, there was no statistically signifi
cant interaction effect between teachers’ position and the proportion of 
trained students on the combined dependent variables, with F(8, 512) =
0.812, p = 0.593, and Pillai’s Trace = 0.025. Therefore, evacuation time 
and agents’ health did not exhibit significant differences among the four 
smoke-free scenarios, encompassing different combinations of students’ 
training and adults’ guidance positioning. 

Fig. 10. Speed change for different smoke configurations (for scenarios where 50 % of agents were trained and teachers were positioned in both classrooms 
and corridors).
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• Scenarios with heavy smoke in one vertical corridor

In the second smoke configuration, the smoke with the highest 
density was positioned in the left corridor, while two additional smoke 
sources with 50 % power were placed in the horizontal and right cor
ridors. Consequently, the agents had only two exits to escape through: 
gates B and C. This group of simulations experienced the second-highest 
number of injuries and the lowest number of deaths (except in smoke- 
free scenarios). Using MANOVA analysis, we observed a significant 

impact of students’ training on the amalgamation of dependent vari
ables, as evidenced by a significant Pillai’s Trace, F(4, 520) = 2.988, p =
0.019, Pillai’s Trace = 0.045. Further scrutiny revealed that the training 
of students significantly influenced the average final health of the stu
dents (F(2, 260) = 5.541, p = 0.004, partial η2 = 0.041). Post hoc 
pairwise comparisons using the Scheffé test were conducted to investi
gate disparities between groups, ensuring a robust control over the Type 
I error rate across all comparisons. These post hoc examinations 
revealed significant disparities in the final health statuses of scenarios 
with 100 % trained students compared to those with no training (Mean 
difference = 0.3877, SE = 0.12259, p = 0.007). Additionally, the posi
tion of teachers significantly impacted the total evacuation time (F(2, 
260) = 4.295, p = 0.015, partial η2 = 0.032). Post hoc analyses revealed 
significant disparities in evacuation time between scenarios in which 
teachers concurrently directed students in both classrooms and corridors 
vs those in which teachers exclusively managed students in classrooms 
(Mean difference = − 2.2155, SE = 0.76980, p = 0.017). The interaction 
between the proportion of trained pupils and teachers’ positions was 
significant, indicating that these factors collectively affect total evacu
ation time (F(4, 260) = 4.129, p = 0.003, partial η2 = 0.06). 

• Scenarios with two heavy smoke in both vertical corridors

In evacuation scenarios involving two smoke sources in vertical 
corridors operating at full capacity and one smoke source with lower 
density in the horizontal passage, the agents had only one exit available 
to go through exit B. For the first time, we observed a high number of 
deceased agents and significantly increased injuries compared to the last 
smoke configuration. However, the evacuation time did not show a 
significant change. MANOVA tests provided further insights into the 
agents’ health and total evacuation time differences in the simulation 
data. The multivariate tests did not demonstrate a significant effect of 
any independent variables on the combination of dependent variables. 
Further analysis revealed that the training of students significantly 
influenced their average final health (F(2, 260) = 3.945, p = 0.021, 
partial η2 = 0.029), where those simulations run by 100 % trained 
students have a significant difference in terms of agents’ average health 
with the simulations conducted by all non-trained students (Mean dif
ference = 0.5304, SE = 0.19220, p = 0.023). 

• Scenarios with heavy smoke in horizontal corridor

In the fourth smoke configuration, the horizontal corridor experi
enced heavy smoke, while two other vertical corridors were affected by 
50 % smoke sources. Consequently, evacuation was only feasible 
through gates A and C. These simulations reported the highest number of 
deaths (indicating the lowest health statuses) and total evacuation time. 
However, the MANOVA tests revealed that there emerged no statisti
cally significant distinctions among the varying levels of the proportion 
of trained agents and teachers’ locations in a linear combination of both 
dependent variables (all p > 0.05). Likewise, neither teachers’ positions 
nor the proportion of trained students exhibited any discernible impact 
on the evacuation total time and agents’ average health statuses.

6. Discussions

Schools function as critical micro-systems within the broader emer
gency response framework. Limited data on children’s perceptions and 
behaviours during emergencies restricts the reliability of school evacu
ation simulations, leading most studies to rely on movement patterns 
and adult psychology to model their behaviour. This study addressed 
this need by understanding children’s evacuation behaviour and in
teractions with hazards, built environments, and safety measures during 
emergencies. Consistent with existing studies in system safety during 
evacuations and hazard dynamics [14,19], smoke density emerged as a 
dominant risk factor causing delayed evacuation time and deteriorated 

Table 3 
Simulation results.

Smoke 
configuration

Trained 
students’ 
proportion

Teachers in: Average final 
health status

Evacuation 
total time

Mean Std. Mean Std.

No smoke 0 % trained 
students

Classrooms 53.81 1.15 38.32 1.28
Corridors 53.55 1.50 38.06 0.79
Both 
classrooms 
& corridors

54.14 1.40 38.52 1.69

50 % 
trained 
students

Classrooms 54.06 1.32 38.29 1.26
Corridors 53.76 1.43 38.34 0.86
Both 
classrooms 
& corridors

54.08 1.12 38.55 1.45

100 % 
trained 
students

Classrooms 54.56 1.59 38.00 0.61
Corridors 53.98 1.37 37.84 0.75
Both 
classrooms 
& corridors

53.81 1.15 38.22 1.15

Heavy smoke in 
one vertical 
corridor

0 % trained 
students

Classrooms 52.41 0.97 51.40 4.28
Corridors 52.58 0.72 48.89 4.87
Both 
classrooms 
& corridors

52.40 0.76 45.39 4.17

50 % 
trained 
students

Classrooms 52.38 0.55 47.16 5.56
Corridors 52.55 0.61 47.83 5.68
Both 
classrooms 
& corridors

52.55 0.61 48.28 4.99

100 % 
trained 
students

Classrooms 52.79 0.90 49.63 5.98
Corridors 52.61 1.13 46.72 5.43
Both 
classrooms 
& corridors

53.03 1.03 47.87 5.45

Heavy smoke in 
two vertical 
corridors

0 % trained 
students

Classrooms 53.74 0.74 49.74 4.78
Corridors 46.88 0.72 46.97 6.04
Both 
classrooms 
& corridors

46.72 0.87 48.27 6.75

50 % 
trained 
students

Classrooms 47.00 0.87 49.25 4.48
Corridors 46.78 0.73 49.58 5.33
Both 
classrooms 
& corridors

46.76 0.84 48.11 4.69

100 % 
trained 
students

Classrooms 47.20 0.71 48.60 7.41
Corridors 46.59 0.73 49.77 6.14
Both 
classrooms 
& corridors

46.76 1.17 48.25 4.52

Heavy smoke in 
horizental 
corridor

0 % trained 
students

Classrooms 30.49 1.08 67.55 3.04
Corridors 30.23 1.08 67.33 2.42
Both 
classrooms 
& corridors

30.47 0.94 67.91 3.35

50 % 
trained 
students

Classrooms 30.74 1.04 68.09 4.42
Corridors 30.42 1.20 69.39 5.70
Both 
classrooms 
& corridors

30.42 1.20 68.20 3.77

100 % 
trained 
students

Classrooms 30.70 0.98 66.68 8.33
Corridors 30.69 0.98 69.30 5.51
Both 
classrooms 
& corridors

30.54 0.97 69.58 5.09
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health levels. Introducing smoke into the school environment could 
negatively affect evacuation time by up to 76.83 % (±0.735) in the 
worst-case scenario. Smoke also negatively impacted health by reducing 
agents’ average health by up to 43.94 % (±0.834) when we modelled 
having a smoke source in the horizontal corridor. Notably, the lowest 
negative impact of smoke on evacuees’ health was observed when heavy 
smoke was present only in a vertical corridor, resulting in a 2.68 % 
(±0.621) deterioration in the average health.

Contrary to the widespread assumption that teachers are the most 
critical facilitators influencing school evacuations’ efficiency, our 
investigation reveals a more nuanced picture. We confirmed that 
increased adult guides during evacuations, especially during affected 
visibility, can supplement the students’ lack of preparedness. However, 
the practicality of such an approach is challenging since not all school 
staff are available during emergencies, and covering everyone becomes 
impossible. Therefore, as an alternative, empowering students with 
basic evacuation knowledge emerges as a more sustainable solution. 
However, its effectiveness and interaction with teachers’ positioning 
vary significantly based on the smoke configuration. For instance, in 
scenarios where heavy smoke encumbers exit in the left corridor, stu
dents’ evacuation preparedness could significantly improve evacuees’ 
average health by 1.2 % (±0.463), decreasing the number of casualties 
and injuries. In such a scenario, strategic teachers’ positioning 
throughout all classrooms and passageways could compensate for the 
lack of self-preparedness, effectively reducing evacuation time by 
10.475 % (±2.764). On the contrary, assuming having 100 % well- 
prepared students, a similar teacher positioning strategy could shorten 
evacuation time by 6 % (±3.63). For a single smoke source in a vertical 
corridor, a balanced combination of teacher placement and students’ 
preparedness could lead to more efficient evacuation. Yet, this approach 
loses efficacy when smoke dynamics change, particularly when the 
horizontal corridor is affected. Interestingly, the findings revealed that 
although various safety strategies did not significantly reduce evacua
tion time in this specific case, they were still effective in saving lives—a 
conclusion that aligns with those drawn by [114] . Contrary to Wang 
et al. (2023) [13], our model revealed that the strategic positioning of 
guides in passways rather than classrooms could significantly reduce 
deaths and injuries. This result underscores the necessity for 
contingency-based evacuation plans tailored to diverse environmental 
conditions and recognises the difficulties in assessing the efficacy of 
school evacuation procedures.

We also noted that although all three exits had similar widths, agents 
in a hurry tended to choose the closest area of the gate, even if other 
areas of the gate were less congested. In exits A and C, agents primarily 
utilised the corners of the gates, leaving much of the area unused. On the 
other hand, agents arrived at exit B from opposite directions, resulting in 
a simultaneous and rapid outflow of agents from both sides of the gate. 
Our results are consistent with those of earlier studies published in the 
literature [115,116], suggesting that the width of the exit should be 
carefully considered during its construction. Increasing the width 
beyond a certain level may not effectively alleviate congestion and 
smooth the flow during emergencies. Consistent with prior research, we 
found that most casualty instances occurred near corridor exits due to 
congestion [109].

The practical implications of these findings are profound for school 
administrators, urban planners, and emergency managers tasked with 
ensuring safety during evacuations. Institutions can adopt more 
comprehensive and adaptive evacuation strategies by recognising the 
limitations of solely relying on teacher guidance and the challenges 
posed by students’ lack of emergency training. Equipping students with 
basic evacuation knowledge is crucial, offering a practical solution to 
complement teacher-led initiatives. These pre-evacuation trainings, as 
discussed by Haghani et al. (2024) [117], may focus on behavioural 
modifications to improve the evacuation system’s efficiency from within 
rather than seeking outside solutions. This observation highlights the 
need for adaptable response strategies that account for fluctuations in 

environmental variables. Integrating these insights into school emer
gency preparedness protocols and urban safety planning enables in
stitutions and municipalities to improve their capacity to minimise risks 
and safeguard the safety and well-being of individuals during emer
gencies. Moreover, additional hazard mitigation strategies, such as 
smoke ventilation, can be considered to mitigate the health impacts of 
smoke [118].

This study, despite its contributions, exhibits some shortcomings that 
warrant attention in future research. The simulation initially concen
trated on a single-story school configuration, as the school administra
tion prohibited full-building evacuation drills owing to safety 
apprehensions. Therefore, lack of empirical data on vertical mobility 
during exercises constrained our capacity to develop and validate a 
multi-story evacuation model. Toilets and office areas were omitted 
from the simulated workplace. This choice was based on the observation 
that students rarely use offices during class hours and that restrooms are 
generally used briefly and by a limited number of students at any given 
time. Subsequent research should seek to integrate vertical circulation 
and stairwell dynamics once relevant data is accessible.

Second, while agents were allocated uniform physical attributes (e. 
g., movement velocity and body dimensions), we incorporated behav
ioural diversity by differentiating between “trained” and “untrained” 
pupils. These groups demonstrated distinct decision-making techniques, 
path selection behaviours, and social interactions (e.g., herding and 
pushing). Nevertheless, further individual-level variability, such as 
variations in ambulation velocity, situational awareness, and decision- 
making latency, was not included and should be addressed in future 
models to improve realism and generalizability. We also acknowledge 
the simplifying assumption of treating teachers as stationary ‘guide 
posts’ in the current model, which does not capture their active role in 
escorting students observed during drills. Future work will aim to 
incorporate mobile teachers to reflect realistic evacuation behaviours 
better and improve model fidelity. Future studies may also investigate 
the model’s scalability for urban-scale disasters, integrating mixed-age 
and disabled populations, as well as various infrastructure types.

Third, the model utilised a dose-response framework derived from 
adult toxicological data owing to the absence of child-specific empirical 
evidence. Although DRM concepts were utilised to estimate the poten
tial decline in children’s health during evacuation, physiological dis
parities, such as reduced airway dimensions, elevated respiratory rates, 
and immature organ systems, likely render children more susceptible to 
smoke exposure than adults. The absence of pediatric-specific dose- 
response characteristics limited our ability to compare simulated health 
outcomes with actual pediatric data directly. Future research must 
emphasise the collection of such data to facilitate enhanced, child- 
specific health models.

Fourth, the simulation assumed static and homogeneous smoke 
dispersion, neglecting the complex fluid dynamics that govern smoke 
movement, visibility, and exposure in actual fire situations. Modelling 
dynamic smoke behaviour requires the integration of computational 
fluid dynamics (CFD) techniques, which are resource-intensive and 
exceed the scope of this study. Similarly, fire-structure interactions, such 
as flame propagation over materials or smoke generation from non- 
structural components, were omitted; however, they can considerably 
influence evacuation safety. Future studies must integrate these dy
namic environmental processes to depict temporal fluctuations in haz
ard conditions more precisely.

These enhancements would certainly expand the model’s applica
bility and facilitate more thorough disaster management and urban 
resilience initiatives. Nonetheless, such expansions necessitate consid
erable computational resources, significant data, and interdisciplinary 
collaboration—elements that surpass the scope and aims of the current 
work. As outlined in Section 4.2.1, ABM deliberately utilises simplified 
and abstract representations to encapsulate the fundamental dynamics 
of evacuation behaviour, rather than striving for comprehensive real- 
world replication. This methodology is well-documented in the 
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literature and facilitates concentrated insights into essential behavioural 
mechanisms.

7. Conclusions

This study advanced our understanding of children’s evacuation 
safety by developing an adaptive and reliable system for addressing 
dynamic hazards in primary schools. By integrating TPB and health-risk 
qualification (DRM), we extended the existing methodologies in this 
field to the children’s population. Our findings on the smoke threshold 
and teachers’ positioning offer actionable insights for education set
tings, emphasising the role of evacuation preparedness and infrastruc
ture design in system safety. In conclusion, the following key findings 
encapsulate the principal insights derived from this study: 

• Recommendations for school evacuation plans derived from the 
simulation results emphasise prioritising the provision of essential 
emergency knowledge to pupils as a crucial element of evacuation 
preparedness. This understanding empowers pupils to respond 
effectively when teachers or staff are absent or when environmental 
conditions alter unexpectedly.

• Contingency-based evacuation strategies for various smoke and 
hazard scenarios must be developed. Teacher deployment must be 
revised in response to environmental conditions, such as intense 
smoke, to improve evacuation efficiency and safety by strategically 
placing teachers along corridors.

• Improving exit design is critical. Exits must be engineered to reduce 
congestion, considering exit width, flow dynamics, and possible 
bottlenecks, particularly at corridor exits. The simulations suggest 
that increasing exit widths above a particular threshold may not 
substantially reduce congestion.

• The use of adult guides in specific areas should be emphasised, 
particularly in the case of fire emergencies. Strategically positioning 
teachers or adult guides in areas where they can assist students most 
effectively, such as near exits and in high-density student areas, can 
reduce fatalities, especially when students are less prepared.
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Appendix

Table X 
Student agents’ characteristics in the agent-based model.

Name of value Range/value Short description

ID 1 to Nth student in the 
model

Each agent will be presented with a unique ID to be recognised in the model.

Simulation-Location Pxcor Pycor Retains the agents’ location as the agents’s position will constantly change.
Class-Location Classroom 1,…, 7 The primary sitting place of the agent.
Speed [0.5,…, 1.8] The study considers the minimum and maximum speeds of 0.5 and 1.8 m/s, respectively, which are subject to be affected by 

numerous factors such as smoke, group size, and injury. In each step, the agent will first collect information from neighbours 
nearby, such as smoke presence and health level, to set the speed.

Health [0,…, 100] The health level of all the student agents’ will be primarily 100, and it will be affected by smoke, crowd-induced force, and 
obstacles encountered.

Trained-Student? 0–100 % The proportion of trained students among the total population.
Probability-of-herding- 

behavior?
0–100 % Due to the agents’ age and uncertainty in human behaviour, both trained and untrained agents can exhibit herding behaviour, 

and training can prevent the frequent occurrence of herding behaviour.
Test-injured? 10 < health <20 To determine whether an agent has previously been injured, ensuring avoidance of double counting.
Injured? Yes/ no To see if the agent is injured (to adjust the speed further).
Test-smoke? Yes/ no To see if the agents are in the proximity of 5 patches near the smoke source.
Test-smoke-health? Depending on the smoke 

density
To see if the impact of smoke density on health has been determined.

(continued on next page)

H. Bahmani et al.                                                                                                                                                                                                                               Reliability Engineering and System Safety 265 (2026) 111591 

15 



Table X (continued )

Name of value Range/value Short description

Distance-Turtle Variable To calculate the distance from the current patch to the selected gate.
Distance-Turtle-Max Variable To calculate the maximum distance of all the patches to the selected gate.
Path-Taken Variable The path taken to exit
Time-Student Variable The agents’ evacuation time
Fixed Yes/ No To verify whether the agent is stuck in congestion for a specific duration or not.
Push Yes/ No Depending on the agent type, they exhibit different pushing behaviours.
Category Gate 1 / 2 Exit choice between gates in the classrooms

Data availability

Data will be made available on request.
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